Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Res ; 3(1): 53, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23855995

RESUMO

BACKGROUND: Many automated radiosynthesizers for producing positron emission tomography (PET) probes provide a means for the operator to create custom synthesis programs. The programming interfaces are typically designed with the engineer rather than the radiochemist in mind, requiring lengthy programs to be created from sequences of low-level, non-intuitive hardware operations. In some cases, the user is even responsible for adding steps to update the graphical representation of the system. In light of these unnecessarily complex approaches, we have created software to perform radiochemistry on the ELIXYS radiosynthesizer with the goal of being intuitive and easy to use. METHODS: Radiochemists were consulted, and a wide range of radiosyntheses were analyzed to determine a comprehensive set of basic chemistry unit operations. Based around these operations, we created a software control system with a client-server architecture. In an attempt to maximize flexibility, the client software was designed to run on a variety of portable multi-touch devices. The software was used to create programs for the synthesis of several 18F-labeled probes on the ELIXYS radiosynthesizer, with [18F]FDG detailed here. To gauge the user-friendliness of the software, program lengths were compared to those from other systems. A small sample group with no prior radiosynthesizer experience was tasked with creating and running a simple protocol. RESULTS: The software was successfully used to synthesize several 18F-labeled PET probes, including [18F]FDG, with synthesis times and yields comparable to literature reports. The resulting programs were significantly shorter and easier to debug than programs from other systems. The sample group of naive users created and ran a simple protocol within a couple of hours, revealing a very short learning curve. The client-server architecture provided reliability, enabling continuity of the synthesis run even if the computer running the client software failed. The architecture enabled a single user to control the hardware while others observed the run in progress or created programs for other probes. CONCLUSIONS: We developed a novel unit operation-based software interface to control automated radiosynthesizers that reduced the program length and complexity and also exhibited a short learning curve. The client-server architecture provided robustness and flexibility.

2.
EJNMMI Res ; 3(1): 52, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23849185

RESUMO

BACKGROUND: Automated radiosynthesizers are vital for routine production of positron-emission tomography tracers to minimize radiation exposure to operators and to ensure reproducible synthesis yields. The recent trend in the synthesizer industry towards the use of disposable kits aims to simplify setup and operation for the user, but often introduces several limitations related to temperature and chemical compatibility, thus requiring reoptimization of protocols developed on non-cassette-based systems. Radiochemists would benefit from a single hybrid system that provides tremendous flexibility for development and optimization of reaction conditions while also providing a pathway to simple, cassette-based production of diverse tracers. METHODS: We have designed, built, and tested an automated three-reactor radiosynthesizer (ELIXYS) to provide a flexible radiosynthesis platform suitable for both tracer development and routine production. The synthesizer is capable of performing high-pressure and high-temperature reactions by eliminating permanent tubing and valve connections to the reaction vessel. Each of the three movable reactors can seal against different locations on disposable cassettes to carry out different functions such as sealed reactions, evaporations, and reagent addition. A reagent and gas handling robot moves sealed reagent vials from storage locations in the cassette to addition positions and also dynamically provides vacuum and inert gas to ports on the cassette. The software integrates these automated features into chemistry unit operations (e.g., React, Evaporate, Add) to intuitively create synthesis protocols. 2-Deoxy-2-[18F]fluoro-5-methyl-ß-l-arabinofuranosyluracil (l-[18F]FMAU) and 2-deoxy-2-[18F]fluoro-ß-d-arabinofuranosylcytosine (d-[18F]FAC) were synthesized to validate the system. RESULTS: l-[18F]FMAU and d-[18F]FAC were successfully synthesized in 165 and 170 min, respectively, with decay-corrected radiochemical yields of 46% ± 1% (n = 6) and 31% ± 5% (n = 6), respectively. The yield, repeatability, and synthesis time are comparable to, or better than, other reports. d-[18F]FAC produced by ELIXYS and another manually operated apparatus exhibited similar biodistribution in wild-type mice. CONCLUSION: The ELIXYS automated radiosynthesizer is capable of performing radiosyntheses requiring demanding conditions: up to three reaction vessels, high temperatures, high pressures, and sensitive reagents. Such flexibility facilitates tracer development and the ability to synthesize multiple tracers on the same system without customization or replumbing. The disposable cassette approach simplifies the transition from development to production.

3.
J Biol Chem ; 284(24): 16531-16540, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19369253

RESUMO

The peripheral stalk of F1F0 ATP synthase is essential for the binding of F1 to FO and for proper transfer of energy between the two sectors of the enzyme. The peripheral stalk of Escherichia coli is composed of a dimer of identical b subunits. In contrast, photosynthetic organisms express two b-like genes that form a heterodimeric peripheral stalk. Previously we generated chimeric peripheral stalks in which a portion of the tether and dimerization domains of the E. coli b subunits were replaced with homologous sequences from the b and b' subunits of Thermosynechococcus elongatus (Claggett, S. B., Grabar, T. B., Dunn, S. D., and Cain, B. D. (2007) J. Bacteriol. 189, 5463-5471). The spatial arrangement of the chimeric b and b' subunits, abbreviated Tb and Tb', has been investigated by Cu2+-mediated disulfide cross-link formation. Disulfide formation was studied both in soluble model polypeptides and between full-length subunits within intact functional F1F0 ATP synthase complexes. In both cases, disulfides were preferentially formed between TbA83C and Tb'A90C, indicating the existence of a staggered relationship between helices of the two chimeric subunits. Even under stringent conditions rapid formation of disulfides between these positions occurred. Importantly, formation of this cross-link had no detectable effect on ATP-driven proton pumping, indicating that the staggered conformation is compatible with normal enzymatic activity. Under less stringent reaction conditions, it was also possible to detect b subunits cross-linked through identical positions, suggesting that an in-register, nonstaggered parallel conformation may also exist.


Assuntos
ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/metabolismo , Cianobactérias/enzimologia , Escherichia coli/enzimologia , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , ATPases Bacterianas Próton-Translocadoras/genética , Reagentes de Ligações Cruzadas/metabolismo , Cisteína/genética , Dimerização , Dissulfetos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
4.
J Bioenerg Biomembr ; 40(1): 1-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18204891

RESUMO

In Escherichia coli, the F(1)F(O) ATP synthase b subunits house a conserved arginine in the tether domain at position 36 where the subunit emerges from the membrane. Previous experiments showed that substitution of isoleucine or glutamate result in a loss of enzyme activity. Double mutants have been constructed in an attempt to achieve an intragenic suppressor of the b (arg36-->ile) and the b (arg36-->glu) mutations. The b (arg36-->ile) mutation could not be suppressed. In contrast, the phenotypic defect resulting from the b (arg36-->glu) mutation was largely suppressed in the b (arg36-->glu,glu39-->arg) double mutant. E. coli expressing the b (arg36-->glu,glu39-->arg) subunit grew well on succinate-based medium. F(1)F(O) ATP synthase complexes were more efficiently assembled and ATP driven proton pumping activity was improved. The evidence suggests that efficient coupling in F(1)F(O) ATP synthase is dependent upon a basic amino acid located at the base of the peripheral stalk.


Assuntos
ATPases Bacterianas Próton-Translocadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Substituição de Aminoácidos , Arginina/genética , Arginina/metabolismo , ATPases Bacterianas Próton-Translocadoras/genética , Domínio Catalítico/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Estrutura Terciária de Proteína/fisiologia
5.
J Bacteriol ; 189(15): 5463-71, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17526709

RESUMO

F(1)F(o) ATP synthases function by a rotary mechanism. The enzyme's peripheral stalk serves as the stator that holds the F(1) sector and its catalytic sites against the movement of the rotor. In Escherichia coli, the peripheral stalk is a homodimer of identical b subunits, but photosynthetic bacteria have open reading frames for two different b-like subunits thought to form heterodimeric b/b' peripheral stalks. Chimeric b subunit genes have been constructed by substituting sequence from the Thermosynechococcus elongatus b and b' genes in the E. coli uncF gene, encoding the b subunit. The recombinant genes were expressed alone and in combination in the E. coli deletion strain KM2 (Deltab). Although not all of the chimeric subunits were incorporated into F(1)F(o) ATP synthase complexes, plasmids expressing either chimeric b(E39-I86) or b'(E39-I86) were capable of functionally complementing strain KM2 (Deltab). Strains expressing these subunits grew better than cells with smaller chimeric segments, such as those expressing the b'(E39-D53) or b(L54-I86) subunit, indicating intragenic suppression. In general, the chimeric subunits modeled on the T. elongatus b subunit proved to be more stable than the b' subunit in vitro. Coexpression of the b(E39-I86) and b'(E39-I86) subunits in strain KM2 (Deltab) yielded F(1)F(o) complexes containing heterodimeric peripheral stalks composed of both subunits.


Assuntos
Cianobactérias/enzimologia , Escherichia coli/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Cianobactérias/genética , Dimerização , Escherichia coli/genética , Deleção de Genes , Teste de Complementação Genética , Dados de Sequência Molecular , Plasmídeos , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
6.
J Bioenerg Biomembr ; 37(2): 67-74, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15906151

RESUMO

The peripheral stalk of F(1)F(0) ATP synthase is composed of a parallel homodimer of b subunits that extends across the cytoplasmic membrane in F(0) to the top of the F(1) sector. The stalk serves as the stator necessary for holding F(1) against movement of the rotor. A series of insertions and deletions have been engineered into the hydrophilic domain that interacts with F(1). Only the hydrophobic segment from val-121 to ala-132 and the extreme carboxyl terminus proved to be highly sensitive to mutation. Deletions in either site apparently abolished enzyme function as a result of defects is assembly of the F(1)F(0) complex. Other mutations manipulating the length of the sequence between these two areas had only limited effects on enzyme function. Expression of a b subunit with insertions with as few as two amino acids into the hydrophobic segment also resulted in loss of F(1)F(0) ATP synthase. However, a fully defective b subunit with seven additional amino acids could be stabilized in a heterodimeric peripheral stalk within a functional F(1)F(0) complex by a normal b subunit.


Assuntos
Escherichia coli/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Dados de Sequência Molecular , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...