Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 238(3): 720-742, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33089524

RESUMO

Selection experiments can elucidate the varying course of adaptive changes across generations. We examined the appendicular skeleton of house mice from four replicate High Runner (HR) lines bred for physical activity on wheels and four non-selected Control (C) lines. HR mice reached apparent selection limits between generations 17 and 27, running ~3-fold more than C. Studies at generations 11, 16, and 21 found that HR mice had evolved thicker hindlimb bones, heavier feet, and larger articular surface areas of the knee and hip joint. Based on biomechanical theory, any or all of these evolved differences may be beneficial for endurance running. Here, we studied mice from generation 68, plus a limited sample from generation 58, to test whether the skeleton continued to evolve after selection limits were reached. Contrary to our expectations, we found few differences between HR and C mice for these later generations, and some of the differences in bone dimensions identified in earlier generations were no longer statistically significant. We hypothesize that the loss of apparently coadapted lower-level traits reflects (1) deterioration related to a gradual increase in inbreeding and/or (2) additional adaptive changes that replace the functional benefits of some skeletal changes.


Assuntos
Adaptação Biológica , Evolução Biológica , Atividade Motora , Seleção Genética , Esqueleto , Animais , Feminino , Masculino , Camundongos , Seleção Artificial
2.
Physiol Behav ; 199: 322-332, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508549

RESUMO

Changes in cardiac function that occur with exercise training have been studied in detail, but those accompanying evolved increases in the duration or intensity of physical activity are poorly understood. To address this gap, we studied electrocardiograms (ECGs) of mice from an artificial selection experiment in which four replicate lines are bred for high voluntary wheel running (HR) while four non-selected lines are maintained as controls (C). ECGs were recorded using an ECGenie (Mouse Specifics, Inc.) both before and after six days of wheel access (as used in the standard protocol to select breeders). We hypothesized that HR mice would show innate differences in ECG characteristics and that the response to training would be greater in HR mice relative to C mice because the former run more. After wheel access, in statistical analyses controlling for variation in body mass, all mice had lower heart rates, and mice from HR lines had longer PR intervals than C lines. Also after wheel access, male mice had increased heart rate variability, whereas females had decreased heart rate variability. With body mass as a covariate, six days of wheel access significantly increased ventricle mass in both HR and C males. Within the HR lines, a subset of mice known as mini-muscle individuals have a 50% reduction in hindlimb muscle mass and generally larger internal organs, including the heart ventricles. As compared with normal-muscled individuals, mini-muscle individuals had a longer QRS complex, both before and after wheel access. Some studies in other species of mammals have shown correlations between athletic performance and QRS duration. Correlations between wheel running and either heart rate or QRS duration (before wheel running) among the eight individual lines of the HR selection experiment or among 17 inbred mouse strains taken from the literature were not statistically significant. However, total revolutions and average speed were negatively correlated with PR duration among lines of the HR selection experiment for males, and duration of running was negatively correlated with PR duration among 17 inbred strains for females. We conclude that HR mice have enhanced trainability of cardiac function as compared with C mice (as indicated by their longer PR duration after wheel access), and that the mini-muscle phenotype causes cardiac changes that have been associated with increased athletic performance in previous studies of mammals.


Assuntos
Coração/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Animais , Eletrocardiografia , Feminino , Masculino , Camundongos , Fenótipo , Caracteres Sexuais
3.
Physiol Behav ; 179: 235-245, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625550

RESUMO

Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO2max) was also unaffected by maternal WD, but HR had higher VO2max than C mice. Adult lean, fat, and total body masses were significantly increased by maternal WD, with greater increase for fat than for lean mass. Overall, no aspect of adult wheel running (total distance, duration, average running speed, maximum speed) or home-cage activity was statistically affected by maternal WD. However, analysis of the 8 individual lines revealed that maternal WD significantly increased wheel running in one of the 4 HR lines. On average, all groups lost fat mass after 6days of voluntary wheel running, but the absolute amount lost was greater for mice with maternal WD resulting in no effect of maternal WD on absolute or % body fat after wheel access. All groups gained lean and total body mass during wheel access, regardless of maternal WD or linetype. Measured after wheel access, circulating leptin, adiponectin, and corticosterone concentrations were unaffected by maternal WD and did not differ between HR and C mice. With body mass as a covariate, heart ventricle mass was increased by maternal WD in both HR and C mice, but fat pads, liver, spleen, and brain masses were unaffected. As found previously, HR mice had larger brains than C mice. Body mass of grand-offspring was unaffected by grand-maternal WD, but grand-offspring wheel running was significantly increased for one HR line and decreased for another HR line by grand-maternal WD. In summary, maternal Western diet had long-lasting and general effects on offspring adult morphology, but effects on adult behavior were limited and contingent on sex and genetic background.


Assuntos
Composição Corporal/genética , Composição Corporal/fisiologia , Dieta Ocidental/efeitos adversos , Interação Gene-Ambiente , Fenômenos Fisiológicos da Nutrição Pré-Natal/genética , Corrida/fisiologia , Animais , Animais não Endogâmicos , Ansiedade/genética , Ansiedade/fisiopatologia , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Masculino , Exposição Materna , Camundongos Endogâmicos ICR , Gravidez , Especificidade da Espécie , Volição
4.
Physiol Biochem Zool ; 90(5): 533-545, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28636434

RESUMO

Postural and kinematic aspects of running may have evolved to support high runner (HR) mice to run approximately threefold farther than control mice. Mice from four replicate HR lines selectively bred for high levels of voluntary wheel running show many differences in locomotor behavior and morphology as compared with four nonselected control (C) lines. We hypothesized that HR mice would show stride alterations that have coadapted with locomotor behavior, morphology, and physiology. More specifically, we predicted that HR mice would have stride characteristics that differed from those of C mice in ways that parallel some of the adaptations seen in highly cursorial animals. For example, we predicted that limbs of HR mice would swing closer to the parasagittal plane, resulting in a two-dimensional measurement of narrowed stance width. We also expected that some differences between HR and C mice might be amplified by 6 d of wheel access, as is used to select breeders each generation. We used the DigiGait Imaging System (Mouse Specifics) to capture high-speed videos in ventral view as mice ran on a motorized treadmill across a range of speeds and then to automatically calculate several aspects of strides. Young adults of both sexes were tested both before and after 6 d of wheel access. Stride length, stride frequency, stance width, stance time, brake time, propel time, swing time, duty factor, and paw contact area were analyzed using a nested analysis of covariance, with body mass as a covariate. As expected, body mass and treadmill speed affected nearly every analyzed metric. Six days of wheel access also affected nearly every measure, indicating pervasive training effects, in both HR and C mice. As predicted, stance width was significantly narrower in HR than C mice. Paw contact area and duty factor were significantly greater in minimuscle individuals (subset of HR mice with 50%-reduced hind limb muscle mass) than in normal-muscled HR or C mice. We conclude that stride characteristics of house mice are adaptable in response to both selective breeding and changes in daily locomotor behavior (activity levels) that occur during as few as 6 d. These results have important implications for understanding the evolution and coadaptation of locomotor behavior and performance.


Assuntos
Cruzamento , Marcha/genética , Marcha/fisiologia , Atividade Motora/genética , Atividade Motora/fisiologia , Animais , Comportamento Animal/fisiologia , Camundongos , Corrida
5.
Physiol Behav ; 170: 133-140, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039074

RESUMO

The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO2max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO2max. In a repeated-measures design spanning 6days, females were housed with water bottles containing Red Bull, caffeine or water in a randomized order, and tested for VO2max twice while receiving each fluid (6 total trials). Neither Red Bull nor caffeine significantly affected either VO2max or a measure of trial cooperativity (rated on a scale of 1-5), but both treatments significantly reduced tiredness (rated on a scale of 1-3) scored at the end of trials for both HR and C lines. Taken together, our results suggest that caffeine increases voluntary exercise levels of mice by delaying fatigue, rather than increasing aerobic capacity.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Bebidas Energéticas , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Corrida/fisiologia , Animais , Fadiga/tratamento farmacológico , Fadiga/fisiopatologia , Feminino , Análise dos Mínimos Quadrados , Masculino , Camundongos , Motivação/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Distribuição Aleatória , Caracteres Sexuais , Especificidade da Espécie , Fatores de Tempo , Volição
6.
Physiol Behav ; 161: 145-154, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106566

RESUMO

Serotonin (5-hydroxytryptamine; 5-HT) is implicated in central fatigue, and 5-HT1A pharmaceuticals are known to influence locomotor endurance in both rodents and humans. We studied the effects of a 5-HT1A agonist and antagonist on both forced and voluntary exercise in the same set of mice. This cohort of mice was taken from 4 replicate lines of mice that have been selectively bred for high levels of voluntary wheel running (HR) as compared with 4 non-selected control (C) lines. HR mice run voluntarily on wheels about 3× as many revolutions per day as compared with C, and have greater endurance during forced treadmill exercise. We hypothesized that drugs targeting serotonin receptors would have differential effects on locomotor behavior of HR and C mice. Subcutaneous injections of a 5-HT1A antagonist (WAY-100,635), a combination of 5-HT1A agonist and a 5-HT1A/1B partial agonist (8-OH-DPAT+pindolol), or physiological saline were given to separate groups of male mice before the start of each of three treadmill trials. The same manipulations were used later during voluntary wheel running on three separate nights. WAY-100,635 decreased treadmill endurance in HR but not C mice (dose by linetype interaction, P=0.0014). 8-OH-DPAT+pindolol affected treadmill endurance (P<0.0001) in a dose-dependent manner, with no dose by linetype interaction. Wheel running was reduced in HR but not C mice at the highest dose of 8-OH-DPAT+pindolol (dose by linetype, P=0.0221), but was not affected by WAY-100,635 treatment. These results provide further evidence that serotonin signaling is an important determinant of performance during both forced and voluntary exercise. Although the elevated wheel running of HR mice does not appear related to alterations in serotonin signaling, their enhanced endurance capacity does. More generally, our results indicate that both forced and voluntary exercise can be affected by an intervention that acts (primarily) centrally.


Assuntos
Fadiga/genética , Resistência Física/genética , Corrida/fisiologia , Serotonina/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Teste de Esforço , Masculino , Camundongos , Camundongos Endogâmicos ICR , Resistência Física/efeitos dos fármacos , Seleção Genética , Serotoninérgicos/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...