Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 6(3): 234-44, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21090814

RESUMO

Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38α (involved in the formation of TNFα and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional (1)H/(13)C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38α both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.


Assuntos
Descoberta de Drogas , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Triagem em Larga Escala , Humanos , Proteína Quinase 8 Ativada por Mitógeno/química , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Endocrinology ; 148(2): 594-608, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17068137

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. The purpose of this study was to evaluate the differences in insulin sensitivity between neonate and adult hepatocytes lacking PTP1B. Immortalized neonatal hepatocytes and primary neonatal and adult hepatocytes have been generated from PTP1B(-/-) and wild-type mice. PTP1B deficiency in immortalized neonatal hepatocytes prolonged insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and IR substrates (IRS) -1, -2 compared with wild-type control cells. Endogenous IR and IRS-2 were down-regulated, whereas IRS-1 was up-regulated in PTP1B(-/-) neonatal hepatocytes and livers of PTP1B(-/-) neonates. Insulin-induced activation of phosphatidylinositol 3-kinase/Akt pathway was prolonged in PTP1B(-/-) immortalized neonatal hepatocytes. However, insulin sensitivity was comparable to wild-type hepatocytes. Rescue of PTP1B in deficient cells suppressed the prolonged insulin signaling, whereas RNA interference in wild-type cells promoted prolonged signaling. In primary neonatal PTP1B(-/-) hepatocytes, insulin prolonged the inhibition of gluconeogenic mRNAs, but the sensitivity to this inhibition was similar to wild-type cells. By contrast, in adult PTP1B-deficient livers, p85alpha was down-regulated compared with the wild type. Moreover, primary hepatocytes from adult PTP1B(-/-) mice displayed enhanced Akt phosphorylation and a more pronounced inhibition of gluconeogenic mRNAs than wild-type cells. Hepatic insulin sensitivity due to PTP1B deficiency is acquired through postnatal development. Thus, changes in IR and IRS-2 expression and in the balance between regulatory and catalytic subunits of phosphatidylinositol 3-kinase are necessary to achieve insulin sensitization in adult PTP1B(-/-) hepatocytes.


Assuntos
Envelhecimento/fisiologia , Hepatócitos/fisiologia , Resistência à Insulina , Insulina/fisiologia , Proteínas Tirosina Fosfatases/deficiência , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Regulação para Baixo , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Gluconeogênese/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , RNA Interferente Pequeno/farmacologia , Receptor de Insulina/metabolismo , Transdução de Sinais , Fatores de Tempo , Tirosina/metabolismo , Regulação para Cima
4.
Bioorg Med Chem Lett ; 16(22): 5723-30, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16971120

RESUMO

The structure-activity relationships of 5,6-positions of aminopyridine carboxamide-based c-Jun N-terminal Kinase (JNK) inhibitors were explored to expand interaction with the kinase specificity and ribose-binding pockets. The syntheses of analogues and the impact of structural modification on in vitro potency and cellular activity are described.


Assuntos
Amidas/farmacologia , Aminopiridinas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Amidas/química , Aminopiridinas/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Ligação Proteica , Ribose/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
5.
J Med Chem ; 49(15): 4455-8, 2006 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16854050

RESUMO

C-Jun NH2 terminal kinases (JNKs) are important cell signaling enzymes. JNK1 plays a central role in linking obesity and insulin resistance. JNK2 and JNK3 may be involved in inflammatory and neurological disorders, respectively. Small-molecule JNK inhibitors could be valuable tools to study the therapeutic benefits of inhibiting these enzymes and as leads for potential drugs targeting JNKs. In this report, we disclose a series of potent and highly selective JNK inhibitors with good pharmacokinetic profiles.


Assuntos
Amidas/síntese química , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Piridinas/síntese química , Administração Oral , Amidas/farmacocinética , Amidas/farmacologia , Animais , Disponibilidade Biológica , Cristalografia por Raios X , Humanos , Técnicas In Vitro , Camundongos , Microssomos/metabolismo , Modelos Moleculares , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos , Relação Estrutura-Atividade , Termodinâmica
6.
J Med Chem ; 49(12): 3563-80, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16759099

RESUMO

The c-Jun N-terminal kinases (JNK-1, -2, and -3) are members of the mitogen activated protein (MAP) kinase family of enzymes. They are activated in response to certain cytokines, as well as by cellular stresses including chemotoxins, peroxides, and irradiation. They have been implicated in the pathology of a variety of different diseases with an inflammatory component including asthma, stroke, Alzheimer's disease, and type 2 diabetes mellitus. In this work, high-throughput screening identified a JNK inhibitor with an excellent kinase selectivity profile. Using X-ray crystallography and biochemical screening to guide our lead optimization, we prepared compounds with inhibitory potencies in the low-double-digit nanomolar range, activity in whole cells, and pharmacokinetics suitable for in vivo use. The new compounds were over 1,000-fold selective for JNK-1 and -2 over other MAP kinases including ERK2, p38alpha, and p38delta and showed little inhibitory activity against a panel of 74 kinases.


Assuntos
Aminopiridinas/síntese química , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Cristalografia por Raios X , Meia-Vida , Humanos , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/química , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Fosforilação , Conformação Proteica , Ratos , Ratos Sprague-Dawley
7.
Biochem Biophys Res Commun ; 343(2): 361-8, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16545776

RESUMO

Activation of PKCtheta is associated with lipid-induced insulin resistance and PKCtheta knockout mice are protected from the lipid-induced defects. However, the exact mechanism by which PKCtheta contributes to insulin resistance is not known. To investigate whether an increase in PKCtheta expression leads to insulin resistance, C2C12 skeletal muscle cells were transfected with PKCtheta DNA and treated with different concentrations of insulin for 10 min. PKCtheta overexpression induced reduction of IRS-1 protein levels with a decrease in insulin-induced p85 binding to IRS-1, phosphorylation of PKB and its substrates, p70 and GSK3. Pretreatment of these cells with GF-109203X (a non-specific PKC inhibitor, IC50 for PKCtheta = 10 nM) recovered insulin signaling. PKCtheta was found to be expressed in liver and treatment of human hepatoma cells (HepG2) with high insulin and glucose resulted in an increase in PKCtheta expression that correlated with a decrease in IRS-1 protein levels and the development of insulin resistance. Reduction of PKCtheta expression using RNAi technology significantly inhibited the degradation of IRS-1 and enhanced insulin-induced IRS-1 tyrosine phosphorylation, p85 association to IRS-1 and PKB phosphorylation. In conclusion, by overexpressing PKCtheta or using RNAi technology to downregulate PKCtheta, we have demonstrated that PKCtheta has a key role in the development of insulin resistance. These findings suggest that PKCtheta mediates not only insulin resistance in muscle but also in liver, which may contribute to the development of whole body insulin resistance and diabetes.


Assuntos
Resistência à Insulina/fisiologia , Insulina/administração & dosagem , Isoenzimas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Mioblastos , Proteína Quinase C-theta , Transdução de Sinais/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 16(10): 2590-4, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16527482

RESUMO

A novel class of 1,9-dihydro-9-hydroxypyrazolo[3,4-b]quinolin-4-ones as c-Jun-N-terminal kinase (JNK) inhibitors is described. These compounds were synthesized via the condensation of 2-nitrobenzaldehydes and hydroxypyrazoles. The structure-activity relationships (SAR) and kinase selectivity profile of the inhibitors are also discussed. Compound 16 was identified as a potent JNK inhibitor with good cellular potency.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Quinolonas/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Estrutura Molecular , Quinolonas/química , Relação Estrutura-Atividade
9.
Mol Cell Endocrinol ; 203(1-2): 155-68, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12782412

RESUMO

Protein tyrosine phosphatases are important regulators of insulin signal transduction. Our studies have shown that in insulin resistant and diabetic ob/ob and db/db mice, reducing the levels of protein tyrosine phosphatase 1B (PTP1B) protein by treatment with a PTP1B antisense oligonucleotide resulted in improved insulin sensitivity and normalized plasma glucose levels. The mechanism by which PTP1B inhibition improves insulin sensitivity is not fully understood. We have used microarray analysis to compare gene expression changes in adipose tissue, liver and muscle of PTP1B antisense-treated ob/ob mice. Our results show that treatment with PTP1B antisense resulted in the downregulation of genes involved in lipogenesis in both fat and liver, and a downregulation of genes involved in adipocyte differentiation in fat, suggesting that PTP1B antisense acts through a different mechanism than thiazolidinedione (TZD) treatment. In summary, microarray results suggest that reduction of PTP1B may alleviate hyperglycemia and enhance insulin sensitivity by a different mechanism than TZD treatment.


Assuntos
Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Lipídeos/biossíntese , Fígado/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Proteínas Tirosina Fosfatases/fisiologia , Tecido Adiposo/citologia , Animais , Glicemia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Resistência à Insulina , Camundongos , Camundongos Obesos , Músculos/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/antagonistas & inibidores
10.
Diabetes ; 52(1): 21-8, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12502489

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin receptor (IR) signal transduction and a drug target for treatment of type 2 diabetes. Using PTP1B antisense oligonucleotides (ASOs), effects of decreased PTP1B levels on insulin signaling in diabetic ob/ob mice were examined. Insulin stimulation, prior to sacrifice, resulted in no significant activation of insulin signaling pathways in livers from ob/ob mice. However, in PTP1B ASO-treated mice, in which PTP1B protein was decreased by 60% in liver, similar stimulation with insulin resulted in increased tyrosine phosphorylation of the IR and IR substrate (IRS)-1 and -2 by threefold, fourfold, and threefold, respectively. IRS-2-associated phosphatidylinositol 3-kinase activity was also increased threefold. Protein kinase B (PKB) serine phosphorylation was increased sevenfold in liver of PTP1B ASO-treated mice upon insulin stimulation, while phosphorylation of PKB substrates, glycogen synthase kinase (GSK)-3alpha and -3beta, was increased more than twofold. Peripheral insulin signaling was increased by PTP1B ASO, as evidenced by increased phosphorylation of PKB in muscle of insulin-stimulated PTP1B ASO-treated animals despite the lack of measurable effects on muscle PTP1B protein. These results indicate that reduction of PTP1B is sufficient to increase insulin-dependent metabolic signaling and improve insulin sensitivity in a diabetic animal model.


Assuntos
Diabetes Mellitus/fisiopatologia , Insulina/fisiologia , Obesidade , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Transdução de Sinais/fisiologia , Animais , Glicemia/análise , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Insulina/sangue , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL/genética , Músculo Esquelético/enzimologia , Oligonucleotídeos Antissenso/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina/metabolismo , Serina/metabolismo , Tirosina/metabolismo
11.
Biochem Biophys Res Commun ; 300(2): 261-7, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12504077

RESUMO

Protein-tyrosine phosphatase-1B (PTP1B) has been implicated as a negative regulator of insulin signaling. PTP1B dephosphorylates the insulin receptor and insulin receptor substrates (IRS-1/2), inhibiting the insulin-signaling pathway. PTP1B has been reported to be elevated in diabetes and insulin-resistant states. Conversely, PTP1B null mice have increased insulin sensitivity. To further investigate the effect of PTP1B reduction on insulin signaling, FAO rat hepatoma cells were transfected, by electroporation, with a specific PTP1B antisense oligonucleotide (ASO), or a control oligonucleotide. The PTP1B ASO caused a 50-70% reduction in PTP1B protein expression as measured by Western blot analysis. Upon insulin stimulation, an increase in the phosphorylation of the insulin receptor and insulin receptor substrates was observed, without any change in protein expression levels. Reduction of PTP1B expression in FAO cells also caused an increase in insulin-stimulated phosphorylation of PKB and GSK3, without any change in protein expression. These results demonstrate that reduction of PTP1B can modulate key insulin signaling events downstream of the insulin receptor.


Assuntos
Insulina/farmacologia , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Fosfatases/fisiologia , Transdução de Sinais , Animais , Carcinoma Hepatocelular , Relação Dose-Resposta a Droga , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oligonucleotídeos Antissenso/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Receptor de Insulina/metabolismo , Células Tumorais Cultivadas
12.
Proc Natl Acad Sci U S A ; 99(17): 11357-62, 2002 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12169659

RESUMO

The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA(1C). Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50alpha, were increased and PI3-kinase p85alpha expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/sangue , Obesidade , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Proteínas Tirosina Fosfatases/genética , Tecido Adiposo/anatomia & histologia , Animais , Sequência de Bases , Glicemia/efeitos dos fármacos , Cruzamentos Genéticos , Diabetes Mellitus/tratamento farmacológico , Teste de Tolerância a Glucose , Insulina/sangue , Insulina/farmacologia , Fígado/anatomia & histologia , Camundongos , Camundongos Obesos , Tamanho do Órgão/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/metabolismo , RNA Complementar/genética , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...