Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(7): 2054-2060, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37039843

RESUMO

Fusarium head blight (FHB) is among the chief threats to profitable barley production, and fungicide applications are one of two main strategies for reducing FHB damage to barley crops. However, there is very little published information on optimal timing of such applications. A 4-year field study was conducted with winter barley in Raleigh, North Carolina, to compare three timings for fungicide application: 50% spike emergence (Zadoks growth stage or GS 55), 100% spike emergence (GS 59), and 6 days after GS 59. Three winter barley cultivars with varying levels of FHB resistance were grown for four successive years (2018 to 2021) in a split-plot experiment and inoculated each spring with Fusarium-infected corn spawn. Three fungicides were compared: propiconazole + pydiflumetofen (Miravis Ace), prothioconazole + tebuconazole (Prosaro), and metconazole (Caramba). Correlations among visual symptoms and assays of harvested grain were modest and were weakened by fungicide applications. Across years and cultivars, deoxynivalenol (DON) and percent Fusarium-infected kernels were most reduced relative to the nontreated control by fungicide applications at the latest timing (GS 59 + 6 days). The early (GS 55) timing resulted in DON not significantly different from the nontreated control. Based on these results, it is recommended that to minimize damage from FHB, fungicide should be applied to winter barley several days after GS 59 (100% spike emergence), and not before GS 59.


Assuntos
Fungicidas Industriais , Fusarium , Hordeum , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Triticum
2.
Phys Rev Lett ; 125(18): 183003, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196257

RESUMO

We show that jet emission from a Bose condensate with periodically driven interactions, also known as "Bose fireworks", contains essential information on the condensate wave function, which is difficult to obtain using standard detection methods. We illustrate the underlying physics with two examples. When condensates acquire phase patterns from external potentials or from vortices, the jets display novel substructure, such as oscillations or spirals, in their correlations. Through a comparison of theory, numerical simulations, and experiments, we show how one can quantitatively extract the phase and the helicity of a condensate from the emission pattern. Our work, demonstrating the strong link between jet emission and the underlying quantum system, bears on the recent emphasis on jet substructure in particle physics.

3.
Nature ; 582(7810): 41-45, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494082

RESUMO

Much of the richness in nature emerges because simple constituents form an endless variety of ordered states1. Whereas many such states are fully characterized by symmetries2, interacting quantum systems can exhibit topological order and are instead characterized by intricate patterns of entanglement3,4. A paradigmatic example of topological order is the Laughlin state5, which minimizes the interaction energy of charged particles in a magnetic field and underlies the fractional quantum Hall effect6. Efforts have been made to enhance our understanding of topological order by forming Laughlin states in synthetic systems of ultracold atoms7,8 or photons9-11. Nonetheless, electron gases remain the only systems in which such topological states have been definitively observed6,12-14. Here we create Laughlin-ordered photon pairs using a gas of strongly interacting, lowest-Landau-level polaritons as a photon collider. Initially uncorrelated photons enter a cavity and hybridize with atomic Rydberg excitations to form polaritons15-17, quasiparticles that here behave like electrons in the lowest Landau level owing to a synthetic magnetic field created by Floquet engineering18 a twisted cavity11,19 and by Rydberg-mediated interactions between them16,17,20,21. Polariton pairs collide and self-organize to avoid each other while conserving angular momentum. Our finite-lifetime polaritons only weakly prefer such organization. Therefore, we harness the unique tunability of Floquet polaritons to distil high-fidelity Laughlin states of photons outside the cavity. Particle-resolved measurements show that these photons avoid each other and exhibit angular momentum correlations, the hallmarks of Laughlin physics. This work provides broad prospects for the study of topological quantum light22.

4.
Science ; 366(6466): 745-749, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31699937

RESUMO

Atom interferometers are powerful tools for both measurements in fundamental physics and inertial sensing applications. Their performance, however, has been limited by the available interrogation time of freely falling atoms in a gravitational field. By suspending the spatially separated atomic wave packets in a lattice formed by the mode of an optical cavity, we realize an interrogation time of 20 seconds. Our approach allows gravitational potentials to be measured by holding, rather than dropping, atoms. After seconds of hold time, gravitational potential energy differences from as little as micrometers of vertical separation generate megaradians of interferometer phase. This trapped geometry suppresses the phase variance due to vibrations by three to four orders of magnitude, overcoming the dominant noise source in atom-interferometric gravimeters.

5.
Nature ; 571(7766): 532-536, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270460

RESUMO

Ordinarily, photons do not interact with one another. However, atoms can be used to mediate photonic interactions1,2, raising the prospect of forming synthetic materials3 and quantum information systems4-7 from photons. One promising approach combines highly excited Rydberg atoms8-12 with the enhanced light-matter coupling of an optical cavity to convert photons into strongly interacting polaritons13-15. However, quantum materials made of optical photons have not yet been realized, because the experimental challenge of coupling a suitable atomic sample with a degenerate cavity has constrained cavity polaritons to a single spatial mode that is resonant with an atomic transition. Here we use Floquet engineering16,17-the periodic modulation of a quantum system-to enable strongly interacting polaritons to access multiple spatial modes of an optical cavity. First, we show that periodically modulating an excited state of rubidium splits its spectral weight to generate new lines-beyond those that are ordinarily characteristic of the atom-separated by multiples of the modulation frequency. Second, we use this capability to simultaneously generate spectral lines that are resonant with two chosen spatial modes of a non-degenerate optical cavity, enabling what we name 'Floquet polaritons' to exist in both modes. Because both spectral lines correspond to the same Floquet-engineered atomic state, adding a single-frequency field is sufficient to couple both modes to a Rydberg excitation. We demonstrate that the resulting polaritons interact strongly in both cavity modes simultaneously. The production of Floquet polaritons provides a promising new route to the realization of ordered states of strongly correlated photons, including crystals and topological fluids, as well as quantum information technologies such as multimode photon-by-photon switching.

6.
Appl Plant Sci ; 7(7): e01250, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346504

RESUMO

PREMISE: Microsatellite markers were developed in the federally endangered species Liatris helleri (Asteraceae) to evaluate species boundaries with closely related congeners within the genus. METHODS AND RESULTS: Using Illumina data, 17 primer pairs were developed in populations of L. helleri. The primers amplified motifs from tri- to hexanucleotide repeats with one to 17 alleles per locus. Primers were also tested for cross-amplification in L. aspera, L. microcephala, and L. pycnostachya. CONCLUSIONS: The developed primers for L. helleri serve as a novel genetic tool for future investigations in this genus, allowing for more explicit species delineation as well as population genetic analyses.

7.
Science ; 363(6426): 521-524, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30705190

RESUMO

Correlations in interacting many-body systems are key to the study of quantum matter. The complexity of the correlations typically grows quickly as the system evolves and thus presents a challenge for experimental characterization and intuitive understanding. In a strongly driven Bose-Einstein condensate, we observe the high-harmonic generation of matter-wave jets with complex correlations as a result of bosonic stimulation. Based on a pattern recognition scheme, we identify a pattern of correlations that reveals the underlying secondary scattering processes and higher-order correlations. We show that pattern recognition offers a versatile strategy to visualize and analyze the quantum dynamics of a many-body system.

8.
Phys Rev Lett ; 121(3): 030402, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085820

RESUMO

We demonstrate a density-dependent gauge field, induced by atomic interactions, for quantum gases. The gauge field results from the synchronous coupling between the interactions and micromotion of the atoms in a modulated two-dimensional optical lattice. As a first step, we show that a coherent shaking of the lattice in two directions can couple the momentum and interactions of atoms and break the fourfold symmetry of the lattice. We then create a full interaction-induced gauge field by modulating the interaction strength in synchrony with the lattice shaking. When a condensate is loaded into this shaken lattice, the gauge field acts to preferentially prepare the system in different quasimomentum ground states depending on the modulation phase. We envision that these interaction-induced fields, created by fine control of micromotion, will provide a stepping stone to model new quantum phenomena within and beyond condensed matter physics.

9.
Phys Rev Lett ; 121(24): 243001, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608768

RESUMO

A Bose condensate, subject to periodic modulation of the two-body interactions, was recently observed to emit matter-wave jets resembling fireworks [Nature (London) 551, 356 (2017)NATUAS0028-083610.1038/nature24272]. In this Letter, combining experiment with numerical simulation, we demonstrate that these "Bose fireworks" represent a late stage in a complex time evolution of the driven condensate. We identify a "density wave" stage which precedes jet emission and results from the interference of matter waves. The density waves self-organize and self-amplify without breaking long range translational symmetry. This density wave structure deterministically establishes the template for the subsequent patterns of the emitted jets. Moreover, our simulations, in good agreement with experiment, address an apparent asymmetry in the jet pattern, and show that it is fully consistent with momentum conservation.

10.
Nature ; 551(7680): 356-359, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29107941

RESUMO

Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.

11.
Phys Rev Lett ; 118(22): 220401, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621968

RESUMO

We address band engineering in the presence of periodic driving by numerically shaking a lattice containing a bosonic condensate. By not restricting to simplified band structure models we are able to address arbitrary values of the shaking frequency, amplitude, and interaction strengths g. For "near-resonant" shaking frequencies with moderate g, a quantum phase transition to a finite momentum superfluid is obtained with Kibble-Zurek scaling and quantitative agreement with experiment. We use this successful calibration as a platform to support a more general investigation of the interplay between (one particle) Floquet theory and the effects associated with arbitrary g. Band crossings lead to superfluid destabilization, but where this occurs depends on g in a complicated fashion.

12.
Opt Express ; 25(8): 8670-8679, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437944

RESUMO

Absorption imaging of ultracold atoms is the foundation for quantitative extraction of information from experiments with ultracold atoms. Due to the limited exposure time available in these systems, the signal-to-noise ratio is largest for high intensity absorption imaging where the intensity of the imaging light is on the order of the saturation intensity. In this case, the absolute value of the intensity of the imaging light enters as an additional parameter making it more sensitive to systematic errors. Here, we present a novel and robust technique to determine the imaging beam intensity in units of the effective saturation intensity to better than 5%. We do this by measuring the momentum transferred to the atoms by the imaging light while varying its intensity. We further utilize the method to quantify the purity of the polarization of the imaging light and to determine the correct imaging detuning.

13.
Science ; 354(6312): 606-610, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811272

RESUMO

The dynamics of many-body systems spanning condensed matter, cosmology, and beyond are hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics are expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop antiferromagnetic spatial correlations resulting from the sub-Poisson distribution of the spacing between topological defects. The fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum critical dynamics.

14.
Phys Rev Lett ; 115(15): 155301, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550731

RESUMO

Optical control of atomic interactions in quantum gases is a long-sought goal of cold atom research. Previous experiments have been hindered by rapid decay of the quantum gas and parasitic deformation of the trap potential. We develop and implement a generic scheme for optical control of Feshbach resonances which yields long quantum gas lifetimes and a negligible parasitic dipole force. We show that fast and local control of interactions leads to intriguing quantum dynamics in new regimes, highlighted by the formation of van der Waals molecules and localized collapse of a Bose condensate.

15.
Phys Rev Lett ; 114(5): 055301, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25699451

RESUMO

We present experimental evidence showing that an interacting Bose condensate in a shaken optical lattice develops a roton-maxon excitation spectrum, a feature normally associated with superfluid helium. The roton-maxon feature originates from the double-well dispersion in the shaken lattice, and can be controlled by both the atomic interaction and the lattice modulation amplitude. We determine the excitation spectrum using Bragg spectroscopy and measure the critical velocity by dragging a weak speckle potential through the condensate-both techniques are based on a digital micromirror device. Our dispersion measurements are in good agreement with a modified Bogoliubov model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...