Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500773

RESUMO

Magnesium doped Amorphous Calcium Carbonate was synthesised from precursor solutions containing varying amounts of calcium, magnesium, H2O and D2O. The Mg/Ca ratio in the resultant Amorphous Calcium Carbonate was found to vary linearly with the Mg/Ca ratio in the precursor solution. All samples crystallised as aragonite. No Mg was found in the final aragonite crystals. Changes in the Mg to Ca ratio were found to only marginally effect nucleation rates but strongly effect crystal growth rates. These results are consistent with a dissolution-reprecipitation model for aragonite formation via an Amorphous Calcium Carbonate intermediate.

2.
Sci Rep ; 12(1): 6870, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477728

RESUMO

Understanding the underlying processes of biomineralization is crucial to a range of disciplines allowing us to quantify the effects of climate change on marine organisms, decipher the details of paleoclimate records and advance the development of biomimetic materials. Many biological minerals form via intermediate amorphous phases, which are hard to characterize due to their transient nature and a lack of long-range order. Here, using Monte Carlo simulations constrained by X-ray and neutron scattering data together with model building, we demonstrate a method for determining the structure of these intermediates with a study of amorphous calcium carbonate (ACC) which is a precursor in the bio-formation of crystalline calcium carbonates. We find that ACC consists of highly ordered anhydrous nano-domains of approx. 2 nm that can be described as nanocrystalline. These nano-domains are held together by an interstitial net-like matrix of water molecules which generate, on the mesoscale, a heterogeneous and gel-like structure of ACC. We probed the structural stability and dynamics of our model on the nanosecond timescale by molecular dynamics simulations. These simulations revealed a gel-like and glassy nature of ACC due to the water molecules and carbonate ions in the interstitial matrix featuring pronounced orientational and translational flexibility. This allows for viscous mobility with diffusion constants four to five orders of magnitude lower than those observed in solutions. Small and ultra-small angle neutron scattering indicates a hierarchically-ordered organization of ACC across length scales that allow us, based on our nano-domain model, to build a comprehensive picture of ACC formation by cluster assembly from solution. This contribution provides a new atomic-scale understanding of ACC and provides a framework for the general exploration of biomineralization and biomimetic processes.


Assuntos
Materiais Biomiméticos , Carbonato de Cálcio , Carbonato de Cálcio/química , Íons , Simulação de Dinâmica Molecular , Água/química
3.
Sci Rep ; 10(1): 5208, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251311

RESUMO

The atomic structure of a germanium doped phosphorous selenide glass of composition Ge2.8P57.7Se39.5 is determined as a function of pressure from ambient to 24 GPa using Monte-Carlo simulations constrained by high energy x-ray scattering data. The ambient pressure structure consists primarily of P4Se3 molecules and planar edge shared phosphorus rings, reminiscent of those found in red phosphorous as well as a small fraction of locally clustered corner-sharing GeSe4 tetrahedra. This low-density amorphous phase transforms into a high-density amorphous phase at ~6.3 GPa. The high-pressure phase is characterized by an extended network structure. The polyamorphic transformation between these two phases involves opening of the P3 ring at the base of the P4Se3 molecules and subsequent reaction with red phosphorus type moieties to produce a cross linked structure. The compression mechanism of the low-density phase involves increased molecular packing, whereas that of the high pressure phase involves an increase in the nearest-neighbor coordination number while the bond angle distributions broaden and shift to smaller angles. The entropy and volume changes associated with this polyamorphic transformation are positive and negative, respectively, and consequently the corresponding Clapeyron slope for this transition would be negative. This result has far reaching implications in our current understanding of the thermodynamics of polyamorphic transitions in glasses and glass-forming liquids.

4.
Phys Chem Chem Phys ; 18(30): 20330-7, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27276013

RESUMO

Systematic correlation in alkaline-earth carbonate compounds between the deviation of the CO3 units from the perfect D3h symmetry and their (13)C nuclear magnetic resonance (NMR) chemical shift anisotropy (CSA) parameters is established. The (13)C NMR CSA parameters of amorphous calcium carbonate (ACC) are measured using two-dimensional (13)C phase adjusted spinning sidebands (PASS) NMR spectroscopy and are analyzed on the basis of this correlation. The results indicate a distortion of the CO3 units in ACC in the form of an in-plane displacement of the C atom away from the centroid of the O3 triangle, resulting from hydrogen bonding with the surrounding H2O molecules, without significant out-of-plane displacement. Similar distortion for all C atoms in the structure of ACC suggests a uniform spatial disposition of H2O molecules around the CO3 units forming a hydrogen-bonded amorphous network. This amorphous network is stabilized against crystallization by steric frustration, while additives such as Mg presumably provide further stabilization by increasing the energy of dehydration.

5.
Dalton Trans ; 44(48): 20843-9, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26468868

RESUMO

The application of pressure on [Co(II)(dpzca)2], which at ambient pressure undergoes abrupt spin crossover (SCO) with thermal hysteresis, gives unique insights into SCO. It reversibly separates the crystallographic phase transition (I41/a↔P21/c) and associated abrupt SCO from the underlying gradual SCO, as shown by detailed room temperature (RT) X-ray crystallography and temperature dependent magnetic susceptibility studies, both under a range of 10 different pressures. The pressure effects are shown to be reversible. The crystal structure of the pressure-induced low-spin state is determined at RT at 0.42(2) and 1.78(9) GPa. At the highest pressure [1.78(9) GPa] the Co-N bond lengths are consistent with the complex being fully LS, and the conjugated terdentate ligands are significantly distorted out of plane. The abrupt SCO event can be shifted up to RT by application of a hydrostatic pressure of ∼0.4 GPa. These magnetic susceptibility (vs. temperature) and X-ray crystallography (at RT) studies, under a range of pressures, show that the SCO can be tuned over a wide range of temperature and pressure space, including RT SCO.

6.
J Radiol Prot ; 35(1): 229-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25693605

RESUMO

The 2011 International Commission on Radiological Protection (ICRP) statement on tissue reactions suggested a significant reduction in the threshold dose for radiation induced cataracts. This, combined with the potential for a long delay between exposure and cataract diagnosis, may result in an increased requirement to evaluate eye dose from past exposures in order to settle current compensation claims. This article highlights how compensation claims relating to radiation exposure are assessed within the UK legal system and suggests that in vivo Electro Paramagnetic Resonance (EPR) dosimetry of teeth has utility for the retrospective quantification of radiation doses to the eye. It was identified that in vivo EPR in its current form may be sufficiently sensitive to support cataract compensation claims, although further work is required to enable appropriate dose conversion coefficients to be quantified.


Assuntos
Catarata/economia , Revisão da Utilização de Seguros/legislação & jurisprudência , Exposição à Radiação/legislação & jurisprudência , Lesões por Radiação/economia , Radiometria/normas , Indenização aos Trabalhadores/legislação & jurisprudência , Bioensaio/normas , Catarata/diagnóstico , Espectroscopia de Ressonância de Spin Eletrônica/normas , Prova Pericial/economia , Prova Pericial/legislação & jurisprudência , Traumatismos Oculares/diagnóstico , Traumatismos Oculares/economia , Humanos , Revisão da Utilização de Seguros/economia , Doses de Radiação , Exposição à Radiação/análise , Lesões por Radiação/diagnóstico , Estudos Retrospectivos , Medição de Risco , Dente/efeitos da radiação , Reino Unido , Indenização aos Trabalhadores/economia
8.
Nat Mater ; 7(11): 890-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18849976

RESUMO

Characterizing the nature of medium-range order (MRO) in liquids and disordered solids is important for understanding their structure and transport properties. However, accurately portraying MRO, as manifested by the first sharp diffraction peak (FSDP) in neutron and X-ray scattering measurements, has remained elusive for more than 80 years. Here, using X-ray diffraction of amorphous red phosphorus compressed to 6.30 GPa, supplemented with micro-Raman scattering studies, we build three-dimensional structural models consistent with the diffraction data. We discover that the pressure dependence of the FSDP intensity and line position can be quantitatively accounted for by a characteristic void distribution function, defined in terms of average void size, void spacing and void density. This work provides a template to unambiguously interpret atomic and void-space MRO across a broad range of technologically promising network-forming materials.

9.
J Synchrotron Radiat ; 12(Pt 5): 650-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16120990

RESUMO

A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.

10.
J Am Chem Soc ; 127(20): 7264-5, 2005 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15898746

RESUMO

The need for wear- and scratch-resistant materials drives the quest for new superhard materials. In this work, we apply two design parameters to identify ultra-incompressible, superhard materials-high valence electron density and high bond covalency. Our first example of such a material is OsB2. The bulk modulus of OsB2 was measured using in situ high-pressure X-ray diffraction and was determined to be in the range of 365-395 GPa. While this value is slightly less than that of the bulk modulus of diamond, due to the anisotropic crystal structure of OsB2, the axis compressibility in the orthorhombic c-direction is less than the axis compressibility found in diamond. OsB2 also scratches the surface of a sapphire window, indicating that the hardness of OsB2 exceeds 2000 kg/mm2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...