Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(21): 14946-14956, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34637308

RESUMO

Nitrate concentrations in high-elevation lakes of the Colorado Front Range remain elevated despite declining trends in atmospherically deposited nitrate since 2000. The current source of this elevated nitrate in surface waters remains elusive, given shifts in additional nitrogen sources via glacial inputs and atmospheric ammonium deposition. We present the complete isotopic composition of nitrate (δ15N, δ18O, and Δ17O) from a suite of nitrate-bearing source waters collected during the summers of 2017-2018 from two alpine ecosystems to constrain the provenance of elevated nitrate in surface waters during the summer open-water season. The results indicate a consistent contribution of uncycled atmospheric nitrate throughout the summer (13-23%) to alpine lakes, despite seasonal changes in source water inputs. The balance of nitrate (as high as 87% in late summer) is likely from nitrate production within the catchment via nitrification of reduced nitrogen sources (e.g., thawed soil organic matter and ammonium deposition) and released with rock glacier meltwater. The role of microbially produced nitrate has become increasingly important over time based on historical surface water samples from the mid-90s to present, a trend coincident with increasing ammonium deposition to alpine systems.


Assuntos
Nitratos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Rios , Poluentes Químicos da Água/análise
2.
J Vis Exp ; (118)2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28060293

RESUMO

Nitrogen oxides (NOx = NO + NO2) are a family of atmospheric trace gases that have great impact on the environment. NOx concentrations directly influence the oxidizing capacity of the atmosphere through interactions with ozone and hydroxyl radicals. The main sink of NOx is the formation and deposition of nitric acid, a component of acid rain and a bioavailable nutrient. NOx is emitted from a mixture of natural and anthropogenic sources, which vary in space and time. The collocation of multiple sources and the short lifetime of NOx make it challenging to quantitatively constrain the influence of different emission sources and their impacts on the environment. Nitrogen isotopes of NOx have been suggested to vary amongst different sources, representing a potentially powerful tool to understand the sources and transport of NOx. However, previous methods of collecting atmospheric NOx integrate over long (week to month) time spans and are not validated for the efficient collection of NOx in relevant, diverse field conditions. We report on a new, highly efficient field-based system that collects atmospheric NOx for isotope analysis at a time resolution between 30 min and 2 hr. This method collects gaseous NOx in solution as nitrate with 100% efficiency under a variety of conditions. Protocols are presented for collecting air in urban settings under both stationary and mobile conditions. We detail the advantages and limitations of the method and demonstrate its application in the field. Data from several deployments are shown to 1) evaluate field-based collection efficiency by comparisons with in situ NOx concentration measurements, 2) test the stability of stored solutions before processing, 3) quantify in situ reproducibility in a variety of urban settings, and 4) demonstrate the range of N isotopes of NOx detected in ambient urban air and on heavily traveled roadways.


Assuntos
Monitoramento Ambiental/métodos , Isótopos de Nitrogênio/análise , Óxidos de Nitrogênio/análise , Atmosfera , Automação , Nitrogênio/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...