Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 60(5): 671-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21327636

RESUMO

Toll-like receptor (TLR) agonists can trigger broad inflammatory responses that elicit rapid innate immunity and promote the activities of lymphocytes, which can potentially enhance adoptive immunotherapy in the tumor-bearing setting. In the present study, we found that Polyinosinic:Polycytidylic Acid [Poly(I:C)] and CpG oligodeoxynucleotide 1826 [CpG], agonists for TLR 3 and 9, respectively, potently activated adoptively transferred T cells against a murine model of established melanoma. Intratumoral injection of Poly(I:C) and CpG, combined with systemic transfer of activated pmel-1 T cells, specific for gp100(25-33), led to enhanced survival and eradication of 9-day established subcutaneous B16F10 melanomas in a proportion of mice. A series of survival studies in knockout mice supported a key mechanistic pathway, whereby TLR agonists acted via host cells to enhance IFN-γ production by adoptively transferred T cells. IFN-γ, in turn, enhanced the immunogenicity of the B16F10 melanoma line, leading to increased killing by adoptively transferred T cells. Thus, this combination approach counteracted tumor escape from immunotherapy via downregulation of immunogenicity. In conclusion, TLR agonists may represent advanced adjuvants within the setting of adoptive T-cell immunotherapy of cancer and hold promise as a safe means of enhancing this approach within the clinic.


Assuntos
Imunoterapia Adotiva , Melanoma Experimental/terapia , Oligodesoxirribonucleotídeos/uso terapêutico , Poli I-C/uso terapêutico , Linfócitos T/imunologia , Receptores Toll-Like/agonistas , Adjuvantes Imunológicos/administração & dosagem , Animais , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Citometria de Fluxo , Inflamação , Interferon gama/biossíntese , Ativação Linfocitária , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Toll-Like/imunologia
2.
J Immunol ; 185(1): 367-75, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20530266

RESUMO

Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naive CD8(+) T cells undergoing initial division while attached to dendritic cells during Ag presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with APCs provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the APC. The cue from the APC is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes, and orientation of the mitotic spindle during division is orchestrated by the partner of inscuteable/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division.


Assuntos
Apresentação de Antígeno/imunologia , Divisão Celular/imunologia , Sequência Conservada/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Adesão Celular/imunologia , Polaridade Celular/imunologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subpopulações de Linfócitos T/metabolismo
3.
J Biol Chem ; 280(6): 4476-82, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15574417

RESUMO

Granzyme B, a protease released from cytotoxic lymphocytes, has been proposed to induce target cell death by cleaving and activating the pro-apoptotic Bcl-2 family member Bid. It has also been proposed that granzyme B can induce target cell death by activating caspases directly, by cleaving caspase substrates, and/or by cleaving several non-caspase substrates. The relative importance of Bid in granzyme B-induced cell death has therefore remained unclear. Here we report that cells isolated from various tissues of Bid-deficient mice were resistant to granzyme B-induced cell death. Consistent with the proposed role of Bid in regulating mitochondrial outer membrane permeabilization, cytochrome c remained in the mitochondria of Bid-deficient cells treated with granzyme B. Unlike wild type cells, Bid-deficient cells survived and were then able to proliferate normally, demonstrating the critical role for Bid in mediating granzyme B-induced apoptosis.


Assuntos
Apoptose , Proteínas de Transporte/fisiologia , Serina Endopeptidases/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Morte Celular , Proliferação de Células , Células Cultivadas , Cromo/metabolismo , Citocromos c/metabolismo , Dendritos/metabolismo , Células Dendríticas , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Granzimas , Membranas Intracelulares/metabolismo , Linfócitos/metabolismo , Linfoma de Células B/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fatores de Tempo
4.
Biochem Pharmacol ; 68(6): 1033-40, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15313398

RESUMO

Most mammalian cells are constantly threatened by viral infection and oncogenic transformation. To maintain healthy function of organs and tissues it is critical that afflicted cells are efficiently detected and removed. Cytotoxic lymphocytes (CL) are chiefly responsible for efficiently seeking out and eliminating damaged or infected cells. It is known that CLs must specifically recognize and bind to their targets, but the molecular events that occur within the target cell that lead to its death are still poorly understood. The two main processes initiated by CLs to induce target cell death are mediated by ligation of surface receptors or release of toxic proteins from secretory granules (granule exocytosis) of the CL. Here we review some of the key findings that have defined our knowledge of the granule exocytosis-mediated pathways to CL-mediated killing and discuss recent insights that challenge conventional views in the important area of CL effector function.


Assuntos
Apoptose/imunologia , Citotoxicidade Imunológica/imunologia , Serina Endopeptidases/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Exocitose/imunologia , Granzimas , Humanos , Mitocôndrias/fisiologia
5.
Cryo Letters ; 23(2): 89-92, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12050776

RESUMO

Antifreeze proteins (AFPs) have been reported in the academic literature for many years, and are increasingly arousing interest in the technical and popular media, particularly because of their potential applications. However, the term "antifreeze" does not always accurately describe their natural function, or their application in frozen systems, where they do not prevent freezing, but control the size, shape and aggregation of ice crystals. We survey the properties and applications of AFPs and propose a more generally applicable name based on the fact that all AFPs bind to ice and consequently influence crystal growth and interactions: "Ice Structuring Proteins".


Assuntos
Proteínas Anticongelantes , Terminologia como Assunto , Animais , Proteínas Anticongelantes/química , Proteínas Anticongelantes/fisiologia , Criopreservação , Conservação de Alimentos , Congelamento , Humanos , Gelo , Preservação de Tecido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...