Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(4): e0055222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35900081

RESUMO

Streptomyces species produce a wide variety of specialized metabolites, some of which are used for communication or competition for resources in their natural environments. In addition, many natural products used in medicine and industry are derived from Streptomyces, and there has been interest in their capacity to produce volatile organic compounds (VOCs) for different industrial and agricultural applications. Recently, a machine-learning workflow called MSHub/GNPS was developed, which enables auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data, molecular networking, and library search capabilities, but it has not been applied to Streptomyces volatilomes. In this study, 131 Streptomyces isolates from the island of Newfoundland were phylogenetically typed, and 37 were selected based on their phylogeny and growth characteristics for VOC analysis using both a user-guided (conventional) and an MSHub/GNPS-based approach. More VOCs were annotated by MSHub/GNPS than by the conventional method. The number of unknown VOCs detected by the two methods was higher than those annotated, suggesting that many novel compounds remain to be identified. The molecular network generated by GNPS can be used to guide the annotation of such unknown VOCs in future studies. However, the number of overlapping VOCs annotated by the two methods is relatively small, suggesting that a combination of analysis methods might be required for robust volatilome analysis. More than half of the VOCs annotated with high confidence by the two approaches are plant-associated, many with reported bioactivities such as insect behavior modulation. Details regarding the properties and reported functions of such VOCs are described. IMPORTANCE This study represents the first detailed analysis of Streptomyces volatilomes using MSHub/GNPS, which in combination with a routinely used conventional method led to many annotations. More VOCs could be annotated using MSHub/GNPS as compared to the conventional method, many of which have known antimicrobial, anticancer, and insect behavior-modulating activities. The identification of numerous plant-associated VOCs by both approaches in the current study suggests that their production could be a more widespread phenomenon by members of the genus, highlighting opportunities for their large-scale production using Streptomyces. Plant-associated VOCs with antimicrobial activities, such as 1-octen-3-ol, octanol, and phenylethyl alcohol, have potential applications as fumigants. Furthermore, many of the annotated VOCs are reported to influence insect behavior, alluding to a possible explanation for their production based on the functions of other recently described Streptomyces VOCs in dispersal and nutrient acquisition.


Assuntos
Streptomyces , Compostos Orgânicos Voláteis , Agricultura , Streptomyces/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
2.
Microorganisms ; 8(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187102

RESUMO

The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography-mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...