Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 809264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720313

RESUMO

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.


Assuntos
Malária , Proteína 1 de Superfície de Merozoito , Adulto , Animais , Anticorpos Antiprotozoários , Formação de Anticorpos , Criança , Humanos , Imunoglobulina G , Imunoglobulina M/metabolismo , Células B de Memória , Merozoítos , Plasmodium falciparum , Receptores de Antígenos de Linfócitos B/metabolismo , Uganda
2.
PLoS One ; 16(12): e0261656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34936684

RESUMO

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


Assuntos
COVID-19/imunologia , Receptores Fc/metabolismo , Proteínas com Domínio T/metabolismo , Adulto , Idoso , Anticorpos Antivirais/sangue , Linfócitos B/metabolismo , Biomarcadores/análise , COVID-19/metabolismo , Feminino , Citometria de Fluxo/métodos , Hospitalização/tendências , Humanos , Imunoglobulina G/sangue , Memória Imunológica , Masculino , Células B de Memória/imunologia , Células B de Memória/metabolismo , Pessoa de Meia-Idade , Receptores Fc/sangue , Receptores Fc/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas com Domínio T/sangue
3.
bioRxiv ; 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34611662

RESUMO

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n=8) or severe (n=5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG + B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG + B cells showed increased expression of markers associated with durable B cell memory, including T-bet, FcRL5, and CD11c, which was not observed after severe disease. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet + IgG + memory B cells decreased to baseline levels. Collectively, our results suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.

5.
Invest Ophthalmol Vis Sci ; 44(9): 4026-34, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12939325

RESUMO

PURPOSE: To modify existing experimental models to simulate the typical clinical presentation of human rhegmatogenous retinal detachment (RRD), namely an RD caused by a retinal break, in a phakic eye, with a posterior vitreous detachment (PVD); to model RRD in a species that is anatomically similar to humans; and to characterize the glial cell response to RRD. METHODS: Mixed-breed pigs underwent vitrectomy, PVD, subretinal injection of viscoelastic, and creation of a break at the apex of the RD. The crystalline lens was not removed. Follow-up was for 0, 1, and 7 days. Tissue was processed for light and electron microscopy. The glial cell response was characterized using antibodies to glial fibrillary acidic protein (GFAP). RESULTS: Of 11 RRDs created in seven pigs, 10 increased in size and 1 decreased. Light and electron microscopy demonstrated typical features of RD. There was constitutive expression of GFAP in astrocytes and Müller cells with increased immunoreactivity from day 1. CONCLUSIONS: This study provided a model of RRD that simulates the typical clinical presentation in humans. It used techniques that most vitreoretinal surgeons are familiar with, and an animal that is widely available and anatomically similar to humans. Anatomic success was high, and the glial cell response established comparability with other species.


Assuntos
Modelos Animais de Doenças , Neuroglia/patologia , Retina/ultraestrutura , Descolamento Retiniano/patologia , Descolamento Retiniano/cirurgia , Animais , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Cristalino/cirurgia , Masculino , Neuroglia/metabolismo , Retina/metabolismo , Descolamento Retiniano/etiologia , Descolamento Retiniano/metabolismo , Perfurações Retinianas/complicações , Suínos , Vitrectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...