Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 177: 135-144, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34954302

RESUMO

L-3,4-dihydroxyphenylalanine (l-DOPA) is the mainstay treatment for Parkinson's disease, but its effectiveness during early disease is marred by the eventual development of l-DOPA induced dyskinesia. In hemi-parkinsonian rats, the serotonin type 3 (5-HT3) antagonists ondansetron and granisetron alleviated dyskinesia induced by l-DOPA without impeding its anti-parkinsonian action; in parkinsonian marmosets, ondansetron alleviated dyskinesia and enhanced l-DOPA anti-parkinsonian action. Here, we sought to gain insight into the mechanisms governing the anti-dyskinetic action of 5-HT3 antagonists and measured 5-HT3 receptor levels across different brain, using [3H]GR65630 autoradiographic binding. Brain sections were chosen from 6-hydroxydopamine (6-OHDA)-lesioned rats exhibiting abnormal involuntary movements (AIMs), as well as l-DOPA-naïve 6-OHDA and sham-lesioned animals. [3H]GR65630 binding increased in the ipsilateral subthalamic nucleus of 6-OHDA-lesioned rats with mild and severe AIMs, (3-fold changes, P < 0.001). [3H]GR65630 binding also increased in the ipsilateral entopeduncular nucleus and thalamus of 6-OHDA-lesioned rats with severe AIMs (75 % and 88 %, P < 0.05). AIMs scores negatively correlated with [3H]GR65630 binding in the ipsilateral dorsolateral striatum and contralateral subthalamic nucleus (P < 0.05). These results suggest that alterations in 5-HT3 mediated neurotransmission may contribute to the pathophysiology of l-DOPA induced dyskinesia.


Assuntos
Discinesia Induzida por Medicamentos , Núcleo Subtalâmico , Animais , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Levodopa/farmacologia , Ondansetron , Oxidopamina , Ratos , Ratos Sprague-Dawley , Serotonina
2.
Curr Opin Pharmacol ; 32: 44-48, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27837687

RESUMO

Activation of a G protein-coupled receptor (GPCR) triggers downstream signalling pathways whose identity is determined not only by the genetic background of the cell, but also by the interacting ligand. Assays that measure endogenous GPCR signalling in vivo are needed to specify the intracellular signalling pathways leading to therapeutic vs. adverse outcomes in animal models. To this end, genetically encoded biosensors can be expressed in vivo with cell type specificity to report GPCR signalling in real time. Biosensor imaging is facilitated by novel microscopic and photometric techniques developed for imaging in behaving animals. The techniques discussed here herald a new wave of in vivo signalling studies that will help identify therapeutically relevant signalling, and design functionally selective drugs for neuropsychiatric diseases.


Assuntos
Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Desenho de Fármacos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Ligantes , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...