Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(1): 913-933, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36577036

RESUMO

A pulldown using a biotinylated natural product of interest in the 17ß-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.


Assuntos
Fatores de Transcrição , Vitanolídeos , Masculino , Humanos , Proteínas Nucleares , Domínios Proteicos , Proteínas de Ciclo Celular
2.
Sci Adv ; 8(31): eabo5546, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921420

RESUMO

Homologous enzymes often exhibit different catalytic rates despite a fully conserved active site. The canonical view is that an enzyme sequence defines its structure and function and, more recently, that intrinsic protein dynamics at different time scales enable and/or promote catalytic activity. Here, we show that, using the protein tyrosine phosphatase PTP1B, residues surrounding the PTP1B active site promote dynamically coordinated chemistry necessary for PTP1B function. However, residues distant to the active site also undergo distinct intermediate time scale dynamics and these dynamics are correlated with its catalytic activity and thus allow for different catalytic rates in this enzyme family. We identify these previously undetected motions using coevolutionary coupling analysis and nuclear magnetic resonance spectroscopy. Our findings strongly indicate that conserved dynamics drives the enzymatic activity of the PTP family. Characterization of these conserved dynamics allows for the identification of novel regulatory elements (therapeutic binding pockets) that can be leveraged for the control of enzymes.


Assuntos
Conformação Proteica , Domínio Catalítico
3.
J Am Chem Soc ; 143(21): 7930-7934, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34018723

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into cells is a complex process that involves (1) recognition of the host entry receptor, angiotensin-converting enzyme 2 (ACE2), by the SARS-CoV-2 spike protein receptor binding domain (RBD), and (2) the subsequent fusion of the viral and cell membranes. Our long-term immune-defense is the production of antibodies (Abs) that recognize the SARS-CoV-2 RBD and successfully block viral infection. Thus, to understand immunity against SARS-CoV-2, a comprehensive molecular understanding of how human SARS-CoV-2 Abs recognize the RBD is needed. Here, we report the sequence-specific backbone assignment of the SARS-CoV-2 RBD and, furthermore, demonstrate that biomolecular NMR spectroscopy chemical shift perturbation (CSP) mapping successfully and rapidly identifies the molecular epitopes of RBD-specific mAbs. By incorporating NMR-based CSP mapping with other molecular techniques to define RBD-mAb interactions and then correlating these data with neutralization efficacy, structure-based approaches for developing improved vaccines and COVID-19 mAb-based therapies will be greatly accelerated.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Monoclonais/química , Anticorpos Antivirais/química , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Sítios de Ligação , Epitopos/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
4.
J Biol Chem ; 295(40): 13829-13837, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32737198

RESUMO

Protein-tyrosine phosphatase 1B (PTP1B) is the canonical enzyme for investigating how distinct structural elements influence enzyme catalytic activity. Although it is recognized that dynamics are essential for PTP1B function, the data collected thus far have not resolved whether distinct elements are dynamically coordinated or, alternatively, whether they fulfill their respective functions independently. To answer this question, we performed a comprehensive 13C-methyl relaxation study of Ile, Leu, and Val (ILV) residues of PTP1B, which, because of its substantially increased sensitivity, provides a comprehensive understanding of the influence of protein motions on different time scales for enzyme function. We discovered that PTP1B exhibits dynamics at three distinct time scales. First, it undergoes a distinctive slow motion that allows for the dynamic binding and release of its two most N-terminal helices from the catalytic core. Second, we showed that PTP1B 13C-methyl group side chain fast time-scale dynamics and 15N backbone fast time-scale dynamics are fully consistent, demonstrating that fast fluctuations are essential for the allosteric control of PTP1B activity. Third, and most importantly, using 13C ILV constant-time Carr-Purcell-Meiboom-Gill relaxation measurements experiments, we demonstrated that all four catalytically important loops-the WPD, Q, E, and substrate-binding loops-work in dynamic unity throughout the catalytic cycle of PTP1B. Thus, these data show that PTP1B activity is not controlled by a single functional element, but instead all key elements are dynamically coordinated. Together, these data provide the first fully comprehensive picture on how the validated drug target PTP1B functions.


Assuntos
Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
5.
Biochemistry ; 58(41): 4183-4194, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31566355

RESUMO

Cellular retinoic acid-binding protein 2 (CRABP2) delivers all-trans retinoic acid (atRA) to retinoic acid receptors (RARs), allowing for the activation of specific gene transcription. The structural similarities between free and atRA-bound CRABP2 raise the questions of how atRA binding occurs and how the atRA:CRABP2 complex is recognized by downstream binding partners. Thus, to gain insights into these questions, we conducted a detailed atRA-CRABP2 interaction study using nuclear magnetic resonance spectroscopy. The data showed that free CRABP2 displays widespread intermediate-time scale dynamics that is effectively suppressed upon atRA binding. This effect is mirrored by the fast-time scale dynamics of CRABP2. Unexpectedly, CRABP2 rigidification in response to atRA binding leads to the stabilization of a homodimerization interface, which encompasses residues located on helix α2 and the ßC-ßD loop as well as residues on strands ßI-ßA and the ßH-ßI loop. Critically, this rigidification also affects CRABP2's nuclear localization signal and RAR-binding motif, suggesting that the loss of conformational entropy upon atRA binding may be the key for the diverse cellular functions of CRABP2.


Assuntos
Multimerização Proteica , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/metabolismo , Tretinoína/química , Tretinoína/metabolismo , Núcleo Celular/metabolismo , Cristalização , Entropia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de Proteína , Receptores do Ácido Retinoico/genética
6.
Proc Natl Acad Sci U S A ; 115(18): 4655-4660, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666261

RESUMO

Mitogen-activated protein kinases, which include p38, are essential for cell differentiation and autophagy. The current model for p38 activation involves activation-loop phosphorylation with subsequent substrate binding leading to substrate phosphorylation. Despite extensive efforts, the molecular mechanism of activation remains unclear. Here, using NMR spectroscopy, we show how the modulation of protein dynamics across timescales activates p38. We find that activation-loop phosphorylation does not change the average conformation of p38; rather it quenches the loop ps-ns dynamics. We then show that substrate binding to nonphosphorylated and phosphorylated p38 results in uniform µs-ms backbone dynamics at catalytically essential regions and across the entire molecule, respectively. Together, these results show that phosphorylation and substrate binding flatten the energy landscape of the protein, making essential elements of allostery and activation dynamically accessible. The high degree of structural conservation among ser/thr kinases suggests that elements of this mechanism may be conserved across the kinase family.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Quinases p38 Ativadas por Mitógeno/química , Regulação Alostérica/fisiologia , Ativação Enzimática/fisiologia , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação/fisiologia , Estrutura Secundária de Proteína , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Nat Commun ; 9(1): 1314, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615624

RESUMO

Rational design and directed evolution have proved to be successful approaches to increase catalytic efficiencies of both natural and artificial enzymes. Protein dynamics is recognized as important, but due to the inherent flexibility of biological macromolecules it is often difficult to distinguish which conformational changes are directly related to function. Here, we use directed evolution on an impaired mutant of the proline isomerase CypA and identify two second-shell mutations that partially restore its catalytic activity. We show both kinetically, using NMR spectroscopy, and structurally, by room-temperature X-ray crystallography, how local perturbations propagate through a large allosteric network to facilitate conformational dynamics. The increased catalysis selected for in the evolutionary screen is correlated with an accelerated interconversion between the two catalytically essential conformational sub-states, which are both captured in the high-resolution X-ray ensembles. Our data provide a glimpse of an evolutionary trajectory and show how subtle changes can fine-tune enzyme function.


Assuntos
Ciclofilina A/química , Evolução Molecular Direcionada , Catálise , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Método de Monte Carlo , Mutação , Prolina/química , Especificidade por Substrato , Temperatura
8.
J Mol Biol ; 426(7): 1554-67, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24406745

RESUMO

The dominant theory on the mechanism of response regulators activation in two-component bacterial signaling systems is the "Y-T coupling" mechanism, wherein the χ1 rotameric state of a highly conserved aromatic residue correlates with the activation of the protein via structural rearrangements coupled to a conserved tyrosine. In this paper, we present evidence that, in the receiver domain of the response regulator nitrogen regulatory protein C (NtrC(R)), the interconversion of this tyrosine (Y101) between its rotameric states is actually faster than the rate of inactive/active conversion and is not correlated to the activation process. Data gathered from NMR relaxation dispersion experiments show that a subset of residues surrounding the conserved tyrosine sense a process that is occurring at a faster rate than the inactive/active conformational transition. We show that this process is related to χ1 rotamer exchange of Y101 and that mutation of this aromatic residue to a leucine eliminated this second faster process without affecting activation. Computational simulations of NtrC(R) in its active conformation further demonstrate that the rotameric state of Y101 is uncorrelated with the global conformational transition during activation. Moreover, the tyrosine does not appear to be involved in the stabilization of the active form upon phosphorylation and is not essential in propagating the signal downstream for ATPase activity of the central domain. Our data provide experimental evidence against the generally accepted "Y-T coupling" mechanism of activation in NtrC(R).


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Sítio Alostérico , Simulação por Computador , Proteínas PII Reguladoras de Nitrogênio/metabolismo
9.
J Mol Biol ; 425(12): 2219-31, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23524133

RESUMO

Tyrosine phosphatase related to biofilm formation A (TpbA) is a periplasmic dual-specificity phosphatase (DUSP) that controls biofilm formation in the pathogenic bacterium Pseudomonas aeruginosa. While DUSPs are known to regulate important cellular functions in both prokaryotes and eukaryotes, very few structures of bacterial DUSPs are available. Here, we present the solution structure of TpbA in the ligand-free open conformation, along with an analysis of the structural and dynamic changes that accompany ligand/phosphate binding. While TpbA adopts a typical DUSP fold, it also possesses distinct structural features that distinguish it from eukaryotic DUSPs. These include additional secondary structural elements, ß0 and α6, and unique conformations of the variable insert, the α4-α5 loop and helix α5 that impart TpbA with a flat active-site surface. In the absence of ligand, the protein tyrosine phosphatase loop is disordered and the general acid loop adopts an open conformation, placing the catalytic aspartate, Asp105, more than 11Å away from the active site. Furthermore, the loops surrounding the active site experience motions on multiple timescales, consistent with a combination of conformational heterogeneity and fast (picosecond to nanosecond) timescale dynamics, which are significantly reduced upon ligand binding. Taken together, these data structurally distinguish TpbA and possibly other bacterial DUSPs from eukaryotic DUSPs and provide a rich picture of active-site dynamics in the ligand-free state that are lost upon ligand binding.


Assuntos
Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo
10.
Nature ; 481(7379): 45-50, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22178925

RESUMO

Small multidrug resistance transporters provide an ideal system to study the minimal requirements for active transport. EmrE is one such transporter in Escherichia coli. It exports a broad class of polyaromatic cation substrates, thus conferring resistance to drug compounds matching this chemical description. However, a great deal of controversy has surrounded the topology of the EmrE homodimer. Here we show that asymmetric antiparallel EmrE exchanges between inward- and outward-facing states that are identical except that they have opposite orientation in the membrane. We quantitatively measure the global conformational exchange between these two states for substrate-bound EmrE in bicelles using solution NMR dynamics experiments. Förster resonance energy transfer reveals that the monomers within each dimer are antiparallel, and paramagnetic relaxation enhancement NMR experiments demonstrate differential water accessibility of the two monomers within each dimer. Our experiments reveal a 'dynamic symmetry' that reconciles the asymmetric EmrE structure with the functional symmetry of residues in the active site.


Assuntos
Antiporters/química , Antiporters/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Preparações Farmacêuticas/metabolismo , Transporte Biológico , Domínio Catalítico , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , Água/química
11.
J Mol Biol ; 403(5): 723-38, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20708627

RESUMO

Peptidyl-prolyl isomerases (PPIases) are emerging as key regulators of many diverse biological processes. Elucidating the role of PPIase activity in vivo has been challenging because mutagenesis of active-site residues not only reduces the catalytic activity of these enzymes but also dramatically affects substrate binding. Employing the cyclophilin A PPIase together with its biologically relevant and natively folded substrate, the N-terminal domain of the human immunodeficiency virus type 1 capsid (CA(N)) protein, we demonstrate here how to dissect residue-specific contributions to PPIase catalysis versus substrate binding utilizing NMR spectroscopy. Surprisingly, a number of cyclophilin A active-site mutants previously assumed to be strongly diminished in activity toward biological substrates based only on a peptide assay catalyze the human immunodeficiency virus capsid with wild-type activity but with a change in the rate-limiting step of the enzymatic cycle. The results illustrate that a quantitative analysis of catalysis using the biological substrates is critical when interpreting the effects of PPIase mutations in biological assays.


Assuntos
Proteínas do Capsídeo/metabolismo , Ciclofilina A/química , Ciclofilina A/metabolismo , HIV-1/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Domínio Catalítico/genética , Ciclofilina A/genética , HIV-1/genética , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
12.
Nature ; 462(7273): 669-73, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19956261

RESUMO

A long-standing challenge is to understand at the atomic level how protein dynamics contribute to enzyme catalysis. X-ray crystallography can provide snapshots of conformational substates sampled during enzymatic reactions, while NMR relaxation methods reveal the rates of interconversion between substates and the corresponding relative populations. However, these current methods cannot simultaneously reveal the detailed atomic structures of the rare states and rationalize the finding that intrinsic motions in the free enzyme occur on a timescale similar to the catalytic turnover rate. Here we introduce dual strategies of ambient-temperature X-ray crystallographic data collection and automated electron-density sampling to structurally unravel interconverting substates of the human proline isomerase, cyclophilin A (CYPA, also known as PPIA). A conservative mutation outside the active site was designed to stabilize features of the previously hidden minor conformation. This mutation not only inverts the equilibrium between the substates, but also causes large, parallel reductions in the conformational interconversion rates and the catalytic rate. These studies introduce crystallographic approaches to define functional minor protein conformations and, in combination with NMR analysis of the enzyme dynamics in solution, show how collective motions directly contribute to the catalytic power of an enzyme.


Assuntos
Cristalografia por Raios X/métodos , Ciclofilina A/química , Modelos Moleculares , Catálise , Ciclofilina A/genética , Humanos , Mutação , Estrutura Terciária de Proteína , Temperatura
13.
Cell ; 139(6): 1109-18, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005804

RESUMO

Phosphorylation is a common mechanism for activating proteins within signaling pathways. Yet, the molecular transitions between the inactive and active conformational states are poorly understood. Here we quantitatively characterize the free-energy landscape of activation of a signaling protein, nitrogen regulatory protein C (NtrC), by connecting functional protein dynamics of phosphorylation-dependent activation to protein folding and show that only a rarely populated, pre-existing active conformation is energetically stabilized by phosphorylation. Using nuclear magnetic resonance (NMR) dynamics, we test an atomic scale pathway for the complex conformational transition, inferred from molecular dynamics simulations (Lei et al., 2009). The data show that the loss of native stabilizing contacts during activation is compensated by non-native transient atomic interactions during the transition. The results unravel atomistic details of native-state protein energy landscapes by expanding the knowledge about ground states to transition landscapes.


Assuntos
Proteínas de Bactérias/química , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Conformação Proteica , Bactérias/química , Bactérias/metabolismo , Ligação de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Termodinâmica
14.
J Biomol NMR ; 45(1-2): 217-25, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19641854

RESUMO

Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R (1) at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire beta-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas do Nucleocapsídeo/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Simulação por Computador , Modelos Moleculares , Método de Monte Carlo , Isótopos de Nitrogênio/química , Conformação Proteica
15.
Biochemistry ; 46(43): 12100-10, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17915942

RESUMO

The solution structure and dynamics of the BRCT domain from human DNA polymerase mu, implicated in repair of chromosome breaks by nonhomologous end joining (NHEJ), has been determined using NMR methods. BRCT domains are typically involved in protein-protein interactions between factors required for the cellular response to DNA damage. The pol mu BRCT domain is atypical in that, unlike other reported BRCT structures, the pol mu BRCT is neither part of a tandem grouping, nor does it appear to form stable homodimers. Although the sequence of the pol mu BRCT domain has some unique characteristics, particularly the presence of >10% proline residues, it forms the characteristic alphabetaalpha sandwich, in which three alpha helices are arrayed around a central four-stranded beta-sheet. The structure of helix alpha1 is characterized by two solvent-exposed hydrophobic residues, F46 and L50, suggesting that this element may play a role in mediating interactions of pol mu with other proteins. Consistent with this argument, mutation of these residues, as well as the proximal, conserved residue R43, specifically blocked the ability of pol mu to efficiently work together with NHEJ factors Ku and XRCC4-ligase IV to join noncomplementary ends together in vitro. The structural, dynamic, and biochemical evidence reported here identifies a functional surface in the pol mu BRCT domain critical for promoting assembly and activity of the NHEJ machinery. Further, the similarity between the interaction regions of the BRCT domains of pol mu and TdT support the conclusion that they participate in NHEJ as alternate polymerases.


Assuntos
DNA Polimerase Dirigida por DNA/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
16.
Biochemistry ; 45(25): 7693-9, 2006 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-16784220

RESUMO

Long-range intraprotein interactions give rise to many important protein behaviors. Understanding how energy is transduced through protein structures to either transmit a signal or elicit conformational changes is therefore a current challenge in structural biology. In an effort to understand such linkages, multiple V --> A mutations were made in the small globular protein eglin c. The physical responses, as mapped by NMR spin relaxation, residual dipolar couplings (RDCs), and scalar couplings, illustrate that the interior of this nonallosteric protein forms a dynamic network and that local perturbations are transmitted as dynamic and structural changes to distal sites as far as 16 A away. Two basic types of propagation responses were observed: contiguous pathways of enhanced (attenuated) dynamics with no change in structure; and dispersed (noncontiguous) changes in methyl rotation rates that appear to result from subtle deformation of backbone structure. In addition, energy transmission is found to be unidirectional. In one mutant, an allosteric conformational change of a side chain is seen in the context of a pathway of propagated changes in picosecond to nanosecond dynamics. The observation of so many long-range interactions in a small, rigid system lends experimental weight to the idea that all well-folded proteins inherently possess allosteric features [Gunasekaran et al. (2004) Proteins 57, 433-443], and that dynamics are a rich source of information for mapping and gaining mechanistic insight into communication pathways in individual proteins.


Assuntos
Regulação Alostérica , Conformação Proteica , Proteínas/química , Substituição de Aminoácidos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Proteínas/genética , Transdução de Sinais
17.
Biochemistry ; 44(10): 3795-805, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15751956

RESUMO

Cryptochromes are blue-light photoreceptors that regulate a variety of responses such as growth and circadian rhythms in organisms ranging from bacteria to humans. Cryptochromes share a high level of sequence identity with the light-activated DNA repair enzyme photolyase. Photolyase uses energy from blue light to repair UV-induced photoproducts in DNA through cyclic electron transfer between the catalytic flavin adenine dinucleotide cofactor and the damaged DNA. Cryptochromes lack DNA repair activity, and their mechanism of signal transduction is not known. It is hypothesized that a light-dependent signaling state in cryptochromes is created as a result of an intramolecular redox reaction, resulting in conformational rearrangement and effector binding. Plant and animal cryptochromes possess 30-250 amino acid carboxy-terminal extensions beyond the photolyase-homology region that have been shown to mediate phototransduction. We analyzed the structures of C-terminal domains from an animal and a plant cryptochrome by computational, biophysical, and biochemical methods and found these domains to be intrinsically unstructured. We show that the photolyase-homology region interacts with the C-terminal domain, inducing stable tertiary structure in the C-terminal domain. Importantly, we demonstrate a light-dependent conformational change in the C-terminal domain of Arabidopsis Cry1. Collectively, these findings provide the first biochemical evidence for the proposed conformational rearrangement of cryptochromes upon light exposure.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Flavoproteínas/química , Flavoproteínas/fisiologia , Luz , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/metabolismo , Dicroísmo Circular , Biologia Computacional/métodos , Criptocromos , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/metabolismo , Desoxirribodipirimidina Fotoliase/fisiologia , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Flavoproteínas/metabolismo , Humanos , Hidrólise , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Células Fotorreceptoras de Vertebrados/química , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Tripsina/química
18.
Biochemistry ; 43(39): 12448-58, 2004 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-15449934

RESUMO

Long-range interactions are fundamental to protein behaviors such as cooperativity and allostery. In an attempt to understand the role protein flexibility plays in such interactions, the distribution of local fluctuations in a globular protein was monitored in response to localized, nonelectrostatic perturbations. Two valine-to-alanine mutations were introduced into the small serine protease inhibitor eglin c, and the (15)N and (2)H NMR spin relaxation properties of these variants were analyzed in terms of the Lipari-Szabo dynamics formalism and compared to those of the wild type. Significant changes in picosecond to nanosecond dynamics were observed in side chains located as much as 13 A from the point of mutation. Additionally, those residues experiencing altered dynamics appear to form contiguous surfaces within the protein. In the case of V54A, the large-to-small mutation results in a rigidification of connected residues, even though this mutation decreases the global stability. These findings suggest that dynamic perturbations arising from single mutations may propagate away from the perturbed site through networks of interacting side chains. That this is observed in eglin c, a classically nonallosteric protein, suggests that such behavior will be observed in many, if not all, globular proteins. Differences in behavior between the two mutants suggest that dynamic responses will be context-dependent.


Assuntos
Mutação Puntual , Subunidades Proteicas/química , Inibidores de Serina Proteinase/química , Serpinas/química , Termodinâmica , Alanina/genética , Animais , Sanguessugas , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nanotecnologia/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Fenilalanina/genética , Reação em Cadeia da Polimerase , Conformação Proteica , Subunidades Proteicas/genética , Proteínas , Inibidores de Serina Proteinase/genética , Serpinas/genética , Triptofano/genética , Valina/genética
19.
Biochemistry ; 42(47): 13856-68, 2003 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-14636053

RESUMO

To gain physical insights into how proteins respond to changes in pH, the picosecond to nanosecond time scale dynamics of the small serine protease inhibitor eglin c have been studied by NMR spin relaxation experiments and MD simulations under two pH solution conditions, pH 7 and 3. Like many proteins, eglin c is destabilized by a lowering of the pH, although it retains enough stability to maintain its native conformation at pH 3. Backbone (15)N relaxation results show comparable global tumbling times (tau(m)) and model-free order parameters (S(2)) under the two pH conditions, indicating that the molecule maintains its overall molecular shape and structure at low pH, although the backbone rigidity is slightly increased (/ = 0.6%). In contrast, the side-chain methyl dynamics, as measured from (2)H relaxation experiments, show a substantial increase in rigidity at lower pH (/ = 14.8%). Molecular dynamics simulations performed at these pH states produce results consistent with NMR measurements, showing that the two methods are in qualitative agreement. Although a full accounting of the physical basis for the concurrent conformational rigidification and destabilization at low pH requires further investigation, the high level of detail in the MD simulations provides a potential molecular mechanism: the breaking of the hydrogen bond between the side chains of Asp46 and Arg53, and changes in electrostatic interactions, appear to allow the binding loop to move closer to the core part of the protein, resulting in a more compact structure at low pH. This more compact structure may be responsible for the increased level of restriction of molecular motion. As these findings show, the stability of a molecular structure is distinct from its conformational rigidity, and the two can even change in opposite directions, against naïve expectation.


Assuntos
Simulação por Computador , Modelos Moleculares , Serpinas/química , Termodinâmica , Animais , Entropia , Concentração de Íons de Hidrogênio , Sanguessugas , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Dobramento de Proteína , Proteínas , Prótons , Soluções , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...