Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 390(2): 222-232, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38565309

RESUMO

Urologic chronic pelvic pain syndrome (UCPPS) is a painful chronic condition with persistent pain originating from the pelvis that often leads to detrimental lifestyle changes in the affected patients. The syndrome develops in both sexes, with an estimated prevalence of 5.7% to 26.6% worldwide. This narrative review summarizes currently recommended therapies for UCPPS, followed by the latest animal model findings and clinical research advances in the field. The diagnosis of UCPPS by clinicians has room for improvement despite the changes in the past decade aiming to decrease the time to treatment. Therapeutic approaches targeting growth factors (i.e., nerve growth factor, vascular endothelial growth factor), amniotic bladder therapy, and stem cell treatments gain more attention as experimental treatment options for UCPPS. The development of novel diagnostic tests based on the latest advances in urinary biomarkers would be beneficial to assist with the clinical diagnosis of UCPPS. Future research directions should address the role of chronic psychologic stress and the mechanisms of pain refractory to conventional management strategies in UCPPS etiology. Testing the applicability of cognitive behavioral therapy in this cohort of UCPPS patients might be promising to increase their quality of life. The search for novel lead compounds and innovative drug delivery systems requires clinically relevant translational animal models. The role of autoimmune responses triggered by environmental factors is another promising research direction to clarify the impact of the immune system in UCPPS pathophysiology. SIGNIFICANCE STATEMENT: This minireview provides an up-to-date summary of the therapeutic approaches for UCPPS with a focus on recent advancements in the clinical diagnosis and treatments of the disease, pathophysiological mechanisms of UCPPS, signaling pathways, and molecular targets involved in pelvic nociception.


Assuntos
Dor Crônica , Dor Pélvica , Humanos , Animais , Dor Pélvica/terapia , Dor Crônica/terapia
2.
PLoS One ; 17(12): e0278918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36490282

RESUMO

Multiple sclerosis (MS) often leads to the development of neurogenic lower urinary tract symptoms (LUTS). We previously characterized neurogenic bladder dysfunction in a mouse model of MS induced by a coronavirus, mouse hepatitis virus (MHV). The aim of the study was to identify genes and pathways linking neuroinflammation in the central nervous system with urinary bladder (UB) dysfunction to enhance our understanding of the mechanisms underlying LUTS in demyelinating diseases. Adult C57BL/6 male mice (N = 12) received either an intracranial injection of MHV (coronavirus-induced encephalomyelitis, CIE group), or sterile saline (control group). Spinal cord (SC) and urinary bladders (UB) were collected from CIE mice at 1 wk and 4 wks, followed by RNA isolation and NanoString nCounter Neuroinflammation assay. Transcriptome analysis of SC identified a significantly changed expression of >150 genes in CIE mice known to regulate astrocyte, microglia and oligodendrocyte functions, neuroinflammation and immune responses. Two genes were significantly upregulated (Ttr and Ms4a4a), and two were downregulated (Asb2 and Myct1) only in the UB of CIE mice. Siglec1 and Zbp1 were the only genes significantly upregulated in both tissues, suggesting a common transcriptomic link between neuroinflammation in the CNS and neurogenic changes in the UB of CIE mice.


Assuntos
Infecções por Coronavirus , Sintomas do Trato Urinário Inferior , Esclerose Múltipla , Bexiga Urinaria Neurogênica , Animais , Masculino , Camundongos , Sistema Nervoso Central , Coronavirus , Infecções por Coronavirus/complicações , Infecções por Coronavirus/genética , Perfilação da Expressão Gênica , Sintomas do Trato Urinário Inferior/genética , Camundongos Endogâmicos C57BL , Esclerose Múltipla/complicações , Esclerose Múltipla/genética , Esclerose Múltipla/virologia , Vírus da Hepatite Murina/genética , Proteínas de Ligação a RNA , Bexiga Urinária , Bexiga Urinaria Neurogênica/genética
3.
PLoS One ; 17(1): e0262769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077502

RESUMO

The study investigated the cellular and molecular mechanisms in the peripheral nervous system (PNS) underlying the symptoms of urologic chronic pelvic pain syndrome (UCPPS) in mice. This work also aimed to test the feasibility of reversing peripheral sensitization in vivo in alleviating UCPPS symptoms. Intravesical instillation of vascular endothelial growth factor A (VEGFA) was used to induce UCPPS-like symptoms in mice. Spontaneous voiding spot assays and manual Von Frey tests were used to evaluate the severity of lower urinary tract symptoms (LUTS) and visceral hypersensitivity in VEGFA-instilled mice. Bladder smooth muscle strip contractility recordings (BSMSC) were used to identify the potential changes in myogenic and neurogenic detrusor muscle contractility at the tissue-level. Quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry were performed to compare the expression levels of VEGF receptors and nociceptors in lumbosacral dorsal root ganglia (DRG) between VEGFA-instilled mice and saline-instilled controls. To manipulate primary afferent activity, Gi-coupled Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) were expressed in lumbosacral DRG neurons of TRPV1-Cre-ZGreen mice via targeted adeno-associated viral vector (AAVs) injections. A small molecule agonist of Gi-DREADD, clozapine-N-oxide (CNO), was injected into the peritoneum (i. p.) in awake animals to silence TRPV1 expressing sensory neurons in vivo during physiological and behavioral recordings of bladder function. Intravesical instillation of VEGFA in the urinary bladders increased visceral mechanical sensitivity and enhanced RTX-sensitive detrusor contractility. Sex differences were identified in the baseline detrusor contractility responses and VEGF-induced visceral hypersensitivity. VEGFA instillations in the urinary bladder led to significant increases in the mRNA and protein expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) in lumbosacral DRG, whereas the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1) and VEGF receptors (VEGFR1 and VEGFR2) remained unchanged when compared to saline-instilled animals. Importantly, the VEGFA-induced visceral hypersensitivity was reversed by Gi-DREADD-mediated neuronal silencing in lumbosacral sensory neurons. Activation of bladder VEGF signaling causes sensory neural plasticity and visceral hypersensitivity in mice, confirming its role of an UCPPS biomarker as identified by the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research studies. Pharmacogenetic inhibition of lumbosacral sensory neurons in vivo completely reversed VEGFA-induced pelvic hypersensitivity in mice, suggesting the strong therapeutic potential for decreasing primary afferent activity in the treatment of pain severity in UCPPS patients.


Assuntos
Analgésicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Região Lombossacral/inervação , Percepção da Dor/efeitos dos fármacos , Dor Pélvica/tratamento farmacológico , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/farmacologia
4.
Pathogens ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34451435

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that is primarily transmitted to humans through the bite of an infected mosquito. ZIKV causes disease in infected humans with added complications of Guillain-Barré syndrome and birth defects in infants born to mothers infected during pregnancy. There are several large immunocompetent animal models for ZIKV including non-human primates (NHPs). NHP models closely reflect human infection; however, due to sample size restrictions, investigations into the effects of transmission route and the impacts on disease dynamics have been understudied. Mice have been widely used for modeling ZIKV infection, yet there are few ZIKV-susceptible immunocompetent mouse models and none of these have been used to investigate sexual transmission. In an effort to identify a small immunocompetent animal model to characterize sexual transmission of ZIKV, we attempt experimental infection of multimammate mice, New Zealand white rabbits, and Hartley guinea pigs. The multimammate mouse is the natural reservoir of Lassa fever virus and has been identified to harbor other human pathogens. Likewise, while NZW rabbits are susceptible to West Nile virus, they have not yet been examined for their susceptibility to infection with ZIKV. Guinea pigs have been successfully used as models for ZIKV infection, but only in immunocompromised life stages (young or pregnant). Here, it was found that the multimammate mouse and New Zealand White (NZW) rabbits are not susceptible ZIKV infection as determined by a lack viral RNA in tissues and fluids collected. Sexually mature male Hartley guinea pigs were inoculated subcutaneously and by mosquito bite, but found to be refractory to ZIKV infection, contrary to findings of other studies in young and pregnant guinea pigs. Interestingly, here it is shown that adult male guinea pigs are not susceptible to ZIKV infection, even when infected by natural route (e.g., mosquito bite). Although a new small animal model for the sexual transmission for ZIKV was not established through this study, these findings provide information on outbred animal species that are not permissive to infection (NZW rabbits and multimammate mice) and new information surrounding limitations of a previously established animal model (guinea pigs).

5.
Insects ; 12(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808172

RESUMO

Arbovirus transmission studies are dependent on the ability to estimate the titer of virus transmitted from infectious mosquitoes to a host. There are several methods for estimating virus titer in mosquito saliva, including (1) using forced salivation (FS) whereby the infectious mosquito's proboscis is forced into a capillary tube containing media to collect and test their saliva for virus, and (2) by quantifying virus expectorated into host tissues or into the blood contained in an artificial feeder immediately after blood feeding. We studied FS and bloodmeals to estimate and compare titers of Zika virus and chikungunya virus transmitted by the mosquito vector Aedes aegypti. Infectious virus and viral genomes of both viruses were detected more often from individual mosquitoes using immersion oil for the FS media compared to fetal bovine serum (FBS) plus glycerol, but the FS media had no influence on virus quantification from positive samples. FS virus titers were equivalent when comparing individuals or groups of mosquitoes that never received a blood meal compared to those that were blood fed immediately prior, showing that blood feeding does not influence FS. This suggested that performing FS on mosquitoes after blood feeding might be an efficient way to estimate virus transmitted during blood feeding. However, detecting virus from the blood remaining in an artificial feeder post-blood feeding was mostly unsuccessful relative to quantifying virus from FS of the post-blood fed mosquitoes. In contrast, immunocompromised mice always became infected after being fed on by Zika-infected mosquitoes, even when no infectious virus was detected in their saliva by FS post-blood feed. Due to this discrepancy, we tested the ingested bloodmeals of individual mosquitoes that fed on artificial blood feeders for virus, and compared these to virus in their saliva harvested from FS and to virus in their bodies. These experiments revealed ~50-100 times higher virus titers in the dissected bloodmeals compared to those detected in the same mosquitoes' saliva, demonstrating how mosquitoes re-ingest much of their saliva during artificial blood feeding, and highlighting a large increase in virus transmission during Aedes aegypti blood feeding. Both FS and the dissected bloodmeals of artificially blood-fed mosquitoes showed that the quantity of viral RNA expectorated by mosquitoes was 2-5 logs more than the quantity of infectious virus. The results from this study add critical information to understanding and quantifying the transmission of Aedes aegypti arboviruses.

6.
Insects ; 12(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925333

RESUMO

We tested a nootkatone product for insecticide activity against the most prominent vectors of Zika virus (ZIKV), Aedes aegypti, and Aedes albopictus. We tested the permethrin-resistant (PERM-R) Vergel strain of A. aegypti and the permethrin-susceptible (PERM-S) New Orleans strain of A. aegypti to determine if insecticide resistance affected their susceptibility to nootkatone. Bottle bioassays showed that the PERM-S strain (New Orleans) was more susceptible to nootkatone than the confirmed A. aegypti permethrin-resistant (PERM-R) strain, Vergel. The A. albopictus strain ATM-NJ95 was a known PERM-S strain and Coatzacoalcos permethrin susceptibility was unknown but proved to be similar to the ATM-NJ95 PERM-S phenotype. The A. albopictus strains (ATM-NJ95 and Coatzacoalcos) were as susceptible to nootkatone as the New Orleans strain. Bottle bioassays conducted with ZIKV-infected mosquitoes showed that the New Orleans (PERM-S) strain was as susceptible to nootkatone as the mock-infected controls, but the PERM-R strain was less susceptible to nootkatone than the mock-infected controls. Repellency/irritancy and biting inhibition bioassays (RIBB) of A. aegypti determined whether the nootkatone-treated arms of three human subjects prevented uninfected A. aegypti mosquitoes from being attracted to the test subjects and blood-feeding on them. The RIBB analyses data calculated the spatial activity index (SAI) and biting inhibition factor (BI) of A. aegypti at different nootkatone concentrations and then compared the SAI and BI of existing repellency products. We concluded that nootkatone repelled mosquitoes at a rate comparable to 7% DEET or 5% picaridin and has the potential to be an efficacious repellent against adult A. aegypti mosquitoes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...