Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 12(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34680669

RESUMO

Recently, the concept of Integrated Pest Management (IPM) was further extended into Integrated Pest and Pollinator Management (IPPM). Implementation of IPPM strategies entails the combination of actions for pest and pollinator management providing complementary or synergistic benefits for yield and/or quality of the harvest. The aim of this study was to examine IPPM elements (i.e., mixed hedgerow, nesting boxes for mason bees, Osmia spp.) and demonstrate their impact in the practical context of modern commercial fruit cultivation in a 4-year case study in an intensive 'Conference' pear orchard. The outcomes of visual observations during transect walks and molecular analysis of pollen collected by mason bees, showed the importance of additional floral resources for the presence of mason bees and other pollinating insects in the orchard environment. Pear quality assessments indicated that insect-mediated pollination had a significant positive impact, with a tendency for higher quality pears in the close vicinity of Osmia nesting boxes. However, despite the fact that pear pollen was also detected in Osmia spp. nest cells, the amount and frequency of pear pollen collection for their nest built-up turned out to be rather low. In the same intensive pear orchard studied for pollination effects, we simultaneously demonstrate the impact of a mixed hedgerow to enhance integrated pest control.

2.
Food Res Int ; 145: 110395, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112398

RESUMO

Mycotoxin intoxication is in general an acknowledged and tackled issue in animals. However, in several parts of the world, mycotoxicoses in humans still remain a relevant issue. The efficacy of two mycotoxin detoxifying animal feed additives, an aflatoxin bentonite clay binder and a fumonisin esterase, was investigated in a human child gut model, i.e. the in vitro Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Additionally, the effect of the detoxifiers on gut microbiota was examined in the SHIME. After an initial two weeks of system stabilisation, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) were added to the SHIME diet during one week. Next, the two detoxifiers and mycotoxins were added to the system for an additional week. The AFB1, FB1, hydrolysed FB1 (HFB1), partially hydrolysed FB1a and FB1b concentrations were determined in SHIME samples using a validated ultra-performance liquid chromatography-tandem mass spectrometry method. The short-chain fatty acid (SCFA) concentrations were determined by a validated gas chromatography-mass spectrometry method. Colonic bacterial communities were analysed using metabarcoding, targeting the hypervariable V1-V3 regions of the 16S rRNA genes. The AFB1 and FB1 concentrations significantly decreased after the addition of the detoxifiers. Likewise, the concentration of HFB1 significantly increased. Concentrations of SCFAs remained generally stable throughout the experiment. No major changes in bacterial composition occurred during the experiment. The results demonstrate the promising effect of these detoxifiers in reducing AFB1 and FB1 concentrations in the human intestinal environment, without compromising the gastrointestinal microbiota.


Assuntos
Aflatoxinas , Fumonisinas , Microbioma Gastrointestinal , Animais , Criança , Ecossistema , Esterases , Humanos , RNA Ribossômico 16S
3.
Int J Parasitol ; 51(9): 777-785, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811913

RESUMO

Parasites influence wild bee population dynamics and are regarded as one of the main drivers of wild bee decline. Most of these parasites are mainly transmitted between bee species via the use of shared floral resources. Disturbance of the plant-pollinator network at a location can hence disturb the transmission of these parasites. Expansion and intensification of agriculture, another major driver of wild bee decline, often disturbs local plant-pollinator networks by altering the availability and diversity of floral resources. Mass-flowering crops are an extreme example as they provide an abundance of floral resources for a short period of time, substantially altering the present plant-pollinator network. This likely has repercussions on parasite transmission in the pollinator community. Using the bloom of mass-flowering crops we tested the hypothesis that an increase in floral resources can dilute parasite transmission in the pollinator community. To test this, we analysed the presence of parasites in the pollen of the brood cell provisions of Osmia spp., collected from trap nests placed in apple and sweet cherry orchards. We collected pollen at several time intervals during and after mass bloom, and found that pollen collected during mass bloom had significantly lower parasite prevalence compared with pollen collected after mass bloom. Furthermore, using pollen barcoding data we found that the presence of MFCs in pollen was a good predictor for lower parasite prevalence. Taken together, our results indicate that an increase in flower availability can reduce parasite transmission between bees.


Assuntos
Parasitos , Animais , Abelhas , Produtos Agrícolas , Frutas , Pólen , Árvores
4.
Ecotoxicol Environ Saf ; 215: 112143, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740489

RESUMO

Risk assessment of pesticides involves ecotoxicological testing. In case pesticide exposure to bees is likely, toxicity tests are performed with honey bees (Apis mellifera), with a tiered approach, for which validated and internationally accepted test protocols exist. However, concerns have grown regarding the protection of non-Apis bees [bumble bees (Bombus spp.), solitary and stingless bees], given their different life cycles and therefore distinct exposure routes. Larvae of solitary bees of the genus Osmia feed on unprocessed pollen during development, yet no toxicity test protocol is internationally accepted or validated to assess the impact of pesticide exposure during this stage of their life cycle. Therefore, the purpose of this study is to further validate a test protocol with two solitary bee species (O. cornuta and O. bicornis) to assess lethal and sublethal effects of pesticide exposure on larval development. Larvae were exposed to thiacloprid (neonicotinoid insecticide) mixed in a new, artificial pollen provision. Both lethal (developmental and winter mortality) and sublethal endpoints (larval development time, pollen provision consumption, cocoon weight, emergence time and adult longevity) were recorded. Effects of lower, more environmentally realistic doses were only reflected in sublethal endpoints. In both bee species, thiacloprid treatment was associated with increased developmental mortality and larval development time, and decreased pollen provision consumption and cocoon weight. The test protocol proved valid and robust and showed that for higher doses of thiacloprid the acute endpoint (larval mortality) is sufficient. In addition, new insights needed to develop a standardized test protocol were acquired, such as testing of a positive control for the first time and selection of male and female individuals at egg level.


Assuntos
Abelhas/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Tiazinas/toxicidade , Animais , Feminino , Himenópteros , Larva/efeitos dos fármacos , Estágios do Ciclo de Vida , Praguicidas/toxicidade , Pólen , Testes de Toxicidade
5.
Pest Manag Sci ; 76(10): 3495-3510, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32128986

RESUMO

BACKGROUND: Pesticides are widely used in fruit orchards. In the context of integrated pest management (IPM) Flemish farmers are advised to restrict the use of pesticides. However, pesticide residues could still pose a threat to beneficial organisms. To date, it is not well known which residues are present in IPM orchards. This study focuses on the pesticide concentration in the topsoil and the implications for soil-dwelling organisms. RESULTS: Topsoil was sampled in ten sweet cherry (Prunus avium (L.) L.) and eight apple (Malus domestica Borkh.) orchards in Flanders (Belgium), to quantify the concentration of pesticide residues. Topsoil was selected because it is a major exposure route for beneficials. Both pesticides from both current spraying schedules and those used previously were found. In addition, an environmental risk assessment was performed using species sensitivity distribution (SSD) and toxicity/exposure ratio (TER) approaches. The SSD approach led to a more conservative outcome. None of the pesticides in the spraying schedule revealed a risk, although some of the persistent and banned pesticides may continue to do so. CONCLUSION: Spraying schedules are good predictors of environmental contamination. Monitoring of residues remains essential to determine the real residue concentration in the topsoil. SSDs proved valuable. It was inferred that in addition to the standard test with the earthworm Eisenia fetida (Savigny, 1826), an arthropod test organism such as Folsomia candida (Willem, 1902) should be used in future risk assessments because it displays higher sensitivity towards insecticides.


Assuntos
Resíduos de Praguicidas/análise , Bélgica , Frutas , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...