Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 6: 444, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21745363

RESUMO

An approach has been developed to produce silver nanoparticles (AgNPs) rapidly on semiconductor wafers using electrochemical deposition. The closely packed AgNPs have a density of up to 1.4 × 1011 cm-2 with good size uniformity. AgNPs retain their shape and position on the substrate when used as nanomasks for producing ultrahigh-density vertical nanowire arrays with controllable size, making it a one-step nanolithography technique. We demonstrate this method on Si/SiGe multilayer superlattices using electrochemical nanopatterning and plasma etching to obtain high-density Si/SiGe multilayer superlattice nanowires.

2.
ACS Nano ; 5(2): 1179-89, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21247201

RESUMO

We demonstrate the feasibility of fabricating heterojunctions of semiconductors with high mismatches in lattice constant and coefficient of thermal expansion by employing nanomembrane bonding. We investigate the structure of and electrical transport across the interface of a Si/Ge bilayer formed by direct, low-temperature hydrophobic bonding of a 200 nm thick monocrystalline Si(001) membrane to a bulk Ge(001) wafer. The membrane bond has an extremely high quality, with an interfacial region of ∼1 nm. No fracture or delamination is observed for temperature changes greater than 350 °C, despite the approximately 2:1 ratio of thermal-expansion coefficients. Both the Si and the Ge maintain a high degree of crystallinity. The junction is highly conductive. The nonlinear transport behavior is fit with a tunneling model, and the bonding behavior is explained with nanomembrane mechanics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...