Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Curr Opin Lipidol ; 35(1): 14-19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800671

RESUMO

PURPOSE OF REVIEW: The aim of this review is to explore a possible link between cell-free DNA (cfDNA) and cardiovascular disease (CVD), which may hold valuable potential for future diagnostics. RECENT FINDINGS: cfDNA has become topic of high interest across several medical fields. cfDNA is used as a diagnostic biomarker in cancer, prenatal care, and transplantation. In addition, cfDNA may play an unrecognized role in biological processes that are involved in or underlying various disease states, for example, inflammation. Elevated levels of cfDNA are associated with various elements of CVD, cardio-metabolic risk factors, and autoimmune diseases. Mitochondrial cfDNA and neutrophil extracellular traps may play distinct roles. Total circulating cfDNA may reflect the unspecific accumulation of stressors and the organism's susceptibility and resilience to such stressors. As such, cfDNA, in a stressful situation, may provide predictive value for future development of CVD. We suggest exploring such possibility through a large-scale prospective cohort study of pregnant women. SUMMARY: There is no doubt that cfDNA is a valuable biomarker. For CVD, its potential is indicated but less explored. New studies may identify cfDNA as a valuable circulating cardiovascular risk marker to help improve risk stratification.


Assuntos
Doenças Cardiovasculares , Ácidos Nucleicos Livres , Humanos , Feminino , Gravidez , Doenças Cardiovasculares/genética , Estudos Prospectivos , Ácidos Nucleicos Livres/genética , Biomarcadores , Fatores de Risco
2.
PLoS One ; 18(10): e0286432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862305

RESUMO

The prevailing concept is that gestational alloimmune liver disease (GALD) is caused by maternal antibodies targeting a currently unknown antigen on the liver of the fetus. This leads to deposition of complement on the fetal hepatocytes and death of the fetal hepatocytes and extensive liver injury. In many cases, the newborn dies. In subsequent pregnancies early treatment of the woman with intravenous immunoglobulin can be instituted, and the prognosis for the fetus will be excellent. Without treatment the prognosis can be severe. Crucial improvements of diagnosis require identification of the target antigen. For this identification, this work was based on two hypotheses: 1. The GALD antigen is exclusively expressed in the fetal liver during normal fetal life in all pregnancies; 2. The GALD antigen is an alloantigen expressed in the fetal liver with the woman being homozygous for the minor allele and the father being, most frequently, homozygous for the major allele. We used three different experimental approaches to identify the liver target antigen of maternal antibodies from women who had given birth to a baby with the clinical GALD diagnosis: 1. Immunoprecipitation of antigens from either a human liver cell line or human fetal livers by immunoprecipitation with maternal antibodies followed by mass spectrometry analysis of captured antigens; 2. Construction of a cDNA expression library from human fetal liver mRNA and screening about 1.3 million recombinants in Escherichia coli using antibodies from mothers of babies diagnosed with GALD; 3. Exome/genome sequencing of DNA from 26 presumably unrelated women who had previously given birth to a child with GALD with husband controls and supplementary HLA typing. In conclusion, using the three experimental approaches we did not identify the GALD target antigen and the exome/genome sequencing results did not support the hypothesis that the GALD antigen is an alloantigen, but the results do not yield basis for excluding that the antigen is exclusively expressed during fetal life., which is the hypothesis we favor.


Assuntos
Doenças do Sistema Digestório , Doenças Fetais , Hemocromatose , Doenças do Recém-Nascido , Hepatopatias , Trombocitopenia Neonatal Aloimune , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Hemocromatose/diagnóstico , Isoantígenos , Hepatopatias/tratamento farmacológico
3.
Biomedicines ; 11(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893020

RESUMO

RH1 incompatibility between mother and fetus can cause hemolytic disease of the fetus and newborn. In Switzerland, fetal RHD genotyping from maternal blood has been recommended from gestational age 18 onwards since the year 2020. This facilitates tailored administration of RH immunoglobulin (RHIG) only to RH1 negative women carrying a RH1 positive fetus. Data from 30 months of noninvasive fetal RHD screening is presented. Cell-free DNA was extracted from 7192 plasma samples using a commercial kit, followed by an in-house qPCR to detect RHD exons 5 and 7, in addition to an amplification control. Valid results were obtained from 7072 samples, with 4515 (64%) fetuses typed RHD positive and 2556 (36%) fetuses being RHD negative. A total of 120 samples led to inconclusive results due to the presence of maternal or fetal RHD variants (46%), followed by women being serologically RH1 positive (37%), and technical issues (17%). One sample was typed false positive, possibly due to contamination. No false negative results were observed. We show that unnecessary administration of RHIG can be avoided for more than one third of RH1 negative pregnant women in Switzerland. This reduces the risks of exposure to a blood-derived product and conserves this limited resource to women in actual need.

4.
Vox Sang ; 118(11): 980-987, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37671771

RESUMO

BACKGROUND AND OBJECTIVES: For 5 years, routine genotyping has been performed for selected blood groups of blood donors in the Copenhagen Capital Region, Denmark. The result is summarized in the following. MATERIALS AND METHODS: Genotyping was carried out by an external service provider using the competitive allele specific PCR (KASP) technology. The genotypes were returned to the blood bank and translated into phenotypes by a proprietary IT application. RESULTS: In total, 65 alleles from 16 blood group systems (ABO, MNS, Rh, Lutheran, Kell, Duffy, Kidd, Diego, Yt, Dombrock, Colton, Landsteiner-Wiener, Cromer, Knops, Vel, secretor status) and the HPA1, HPA5 and HPA15 antigens were interrogated. After translation, phenotypes were imported into the laboratory information management system of the blood bank. The results from 31,538 genotyped blood donors were used to calculate the allele frequencies for a Danish blood donor population. ABO genotyping was done for sample ID purposes. Determination of the 1061delC single nucleotide polymorphism (SNP) (NM_020469.2), most frequently characteristic of ABO*A2, was validated against a series of 1287 samples with Dolichos biflorus lectin determination of the A1 phenotype. CONCLUSION: We report allele frequencies and phenotype frequencies for 16 blood groups from a total of 31,538 genotyped blood donors. Blood products were supplied from a total of 64,312 active blood donors, and of these active blood donors 25,396 (39.5%) were genotyped. These donors represent a valuable resource for patient treatment. This genotyping has enabled the provision of rare genotyped donor blood for patients with alloantibodies and rare reagent cells for serology.


Assuntos
Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Doadores de Sangue , Genótipo , Frequência do Gene , Polimorfismo de Nucleotídeo Único
5.
Immunobiology ; 228(4): 152399, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37329825

RESUMO

BACKGROUND: Susceptibility to severe acute respiratory syndrome coronavirus 2 shows individual variability in un-vaccinated and previously un-exposed individuals. We investigated the impact of ABO blood group, titers of anti-A and anti-B, other blood group antigens, and the extracellular deposition of ABH antigens as controlled by secretor fucosyltransferase 2 (FUT2) status. STUDY DESIGN AND METHODS: We studied incidents in three different hospitals between April to September 2020, where un-diagnosed coronavirus disease 2019 (COVID-19) patients were cared for by health care workers without use of personal protection and with close contact while delivering therapy. We recruited 108 exposed staff, of whom 34 were diagnosed with COVID-19. ABO blood type, titer of anti-A and -B, blood group specific alleles, and secretor status were determined. RESULTS: Blood group O was associated with lower risk of COVID-19 (OR 0.39, 95 %CI (0.16-0.92), p = 0.03) compared to non-O, i.e., blood groups A, B and AB. High titer anti-A immunoglobulin G (IgG) compared to low titer was associated with lower risk of COVID-19 (OR 0.24 95 %CI (0.07-0.78), p = 0.017). High titer of anti-B immunoglobulin M (IgM) compared to no anti-B (IgM) was associated with lower risk of COVID-19 (OR 0.16, 95 %CI (0.039-0.608), p = 0.006) and the same applies to low titer anti-B (IgM) compared to no titer (OR 0.23, 95 %CI (0.07-0.72), p = 0.012). The 33Pro variant in Integrin beta-3, that is part of human platelet antigen 1b (HPA-1b), was associated with lower risk of COVID-19 (OR 0.23, 95 %CI (0.034-0.86), p = 0.028). CONCLUSION: Our data showed that blood group O, anti-A (IgG) titer, anti-B (IgM) titer as well as HPA-1b are associated with lower risk for COVID-19.


Assuntos
Sistema ABO de Grupos Sanguíneos , COVID-19 , Humanos , Imunoglobulina M , Imunoglobulina G , SARS-CoV-2
6.
Vox Sang ; 118(5): 402-406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36896479

RESUMO

BACKGROUND AND OBJECTIVES: Identification of antibody characteristics and genetics underlying the development of maternal anti-A/B linked to inducing haemolytic disease of the foetus and newborn could contribute to the development of screening methods predicting pregnancies at risk with high diagnostic accuracy. MATERIALS AND METHODS: We examined 73 samples from mothers to 37 newborns with haemolysis (cases) and 36 without (controls). The secretor status was determined by genotyping a single nucleotide polymorphism in FUT2, rs601338 (c.428G>A). RESULTS: We found a significant association between secretor mothers and newborns developing haemolysis (p = 0.028). However, stratifying by the newborn's blood group, the association was found only in secretor mothers to blood group B newborns (p = 0.032). In fact, only secretor mothers were found in this group. By including antibody data from a previous study, we found higher median semi-quantitative levels of IgG1 and IgG3 among secretor mothers than non-secretor mothers to newborns with and without haemolysis. CONCLUSION: We found that the maternal secretor status is associated with the production of anti-A/B, pathogenic to ABO-incompatible newborns. We suggest that secretors experience hyper-immunizing events more frequently than non-secretors, leading to the production of pathogenic ABO antibodies, especially anti-B.


Assuntos
Sistema ABO de Grupos Sanguíneos , Eritroblastose Fetal , Feminino , Gravidez , Humanos , Recém-Nascido , Sistema ABO de Grupos Sanguíneos/genética , Hemólise , Incompatibilidade de Grupos Sanguíneos/genética , Eritroblastose Fetal/genética , Imunoglobulina G
7.
PLoS One ; 18(2): e0282332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827438

RESUMO

In solid organ transplantation, donor-derived cell-free DNA (dd-cfDNA) is a promising universal noninvasive biomarker for allograft health, where high levels of dd-cfDNA indicate organ damage. Using Droplet Digital PCR (ddPCR), we aimed to develop an assay setup for monitoring organ health. We aimed to identify the least distinguishable percentage-point increase in the fraction of minute amounts of cfDNA in a large cfDNA background by using assays targeting single nucleotide polymorphisms (SNPs). We mimicked a clinical sample from a recipient in a number of spike-in experiments, where cfDNA from healthy volunteers were mixed. A total of 40 assays were tested and approved by qPCR and ddPCR. Limit of detection (LOD) was demonstrated to be approximately 3 copies per reaction, observed at a fraction of 0.002%, and which would equal 6 copies per mL plasma. Limit of quantification (LOQ) was 35 copies per reaction, estimated to 0.038%. The lowest detectable increase in percentage point of dd-cfDNA was approximately 0.04%. Our results demonstrated that ddPCR has great sensitivity, high precision, and exceptional ability to quantify low levels of cfDNA. The ability to distinguish small differences in mimicking dd-cfDNA was far beyond the desired capability. While these methodological data are promising, further prospective studies are needed to determine the clinical utility of the proposed method.


Assuntos
Ácidos Nucleicos Livres , Transplante de Órgãos , Humanos , Transplante Homólogo , Reação em Cadeia da Polimerase , Aloenxertos , Rejeição de Enxerto/genética
8.
Transfus Med Hemother ; 49(4): 240-249, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36159959

RESUMO

Introduction: In the Kell blood group system, the K and k antigens are the clinically most important ones. Maternal anti-K IgG antibodies can lead to the demise of a K-positive fetus in early pregnancy. Intervention can save the fetus. Prenatal K status prediction of the fetus in early pregnancy is desirable and gives a good basis for pregnancy risk management. We present the results from 7 years of clinical experience in predicting fetal K status as well as some theoretical considerations relevant for design of the assay and evaluation of results. Methods: Blood was collected from 43 women, all immunized against K, at a mean gestational age of 18 weeks (range 10-38). A total of 56 consecutive samples were tested. The KEL *01.01 /KEL *02 single nucleotide variant that determines K status was amplified from maternal plasma DNA by PCR without allele specificity. The PCR product was sequenced by NGS technology, and the number of sequenced KEL *01.01 and KEL *02 reads were counted. Prediction of the fetal K status was based on this count and was compared with the serologically determined K status of the newborns. Results: All fetal K predictions were in accordance with postnatal serology where available (n = 34), using our current data analysis. Conclusion: We have developed an NGS-based method for the non-invasive prediction of fetal K status. This approach requires special considerations in terms of primer design, stringent preanalytical sample handling, and careful analytical procedures. We analyzed samples starting at GA 10 weeks and demonstrated the correct prediction of fetal K status. This assay enables timely clinical intervention in pregnancies at risk of hemolytic disease of the fetus and newborn caused by maternal anti-K IgG antibodies.

9.
Vox Sang ; 117(11): 1332-1344, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36121188

RESUMO

BACKGROUND AND OBJECTIVES: Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS: Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION: The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Eritrócitos , Humanos , Antígenos de Grupos Sanguíneos/genética , Transfusão de Sangue , Imunogenética , Pandemias , Eritrócitos/imunologia
10.
Vox Sang ; 117(2): 157-165, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34155647

RESUMO

BACKGROUND AND OBJECTIVES: Non-invasive assays for predicting foetal blood group status in pregnancy serve as valuable clinical tools in the management of pregnancies at risk of detrimental consequences due to blood group antigen incompatibility. To secure clinical applicability, assays for non-invasive prenatal testing of foetal blood groups need to follow strict rules for validation and quality assurance. Here, we present a multi-national position paper with specific recommendations for validation and quality assurance for such assays and discuss their risk classification according to EU regulations. MATERIALS AND METHODS: We reviewed the literature covering validation for in-vitro diagnostic (IVD) assays in general and for non-invasive foetal RHD genotyping in particular. Recommendations were based on the result of discussions between co-authors. RESULTS: In relation to Annex VIII of the In-Vitro-Diagnostic Medical Device Regulation 2017/746 of the European Parliament and the Council, assays for non-invasive prenatal testing of foetal blood groups are risk class D devices. In our opinion, screening for targeted anti-D prophylaxis for non-immunized RhD negative women should be placed under risk class C. To ensure high quality of non-invasive foetal blood group assays within and beyond the European Union, we present specific recommendations for validation and quality assurance in terms of analytical detection limit, range and linearity, precision, robustness, pre-analytics and use of controls in routine testing. With respect to immunized women, different requirements for validation and IVD risk classification are discussed. CONCLUSION: These recommendations should be followed to ensure appropriate assay performance and applicability for clinical use of both commercial and in-house assays.


Assuntos
Antígenos de Grupos Sanguíneos , Antígenos de Grupos Sanguíneos/genética , Feminino , Sangue Fetal , Feto , Genótipo , Humanos , Gravidez , Diagnóstico Pré-Natal , Sistema do Grupo Sanguíneo Rh-Hr/genética
11.
Transfus Med Hemother ; 49(5): 320-325, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37969868

RESUMO

Inborn hemolytic anemia requiring frequent blood transfusions can be a life-threatening disease. Treatment, besides blood transfusion, includes iron chelation for prevention of iron accumulation due to frequent blood transfusions. We present the results of a clinical investigation where the proband was diagnosed with severe hemolytic anemia of unknown origin soon after birth. Transfusion was required every 4-6 weeks. After whole exome sequencing of the proband and his parents as well as a healthy sibling, we established that the proband had a compound heterozygous state carrying two rare variants in the erythrocytic spectrin gene, SPTA1. The maternal allele was a stop mutation (rs755630903) and the paternal allele was a missense mutation (rs375506528). The healthy sibling had the paternal variant but not the maternal variant. These rare variants of SPTA1 most likely account for the hemolytic anemia. A severely reduced osmotic resistance in the erythrocytes from the proband was demonstrated. Splenectomy considerably improved the hemolytic anemia and obviated the need for blood transfusion despite the severe clinical presentation.

12.
Vox Sang ; 117(3): 415-423, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34409614

RESUMO

BACKGROUND AND OBJECTIVES: Prediction of haemolytic disease of the foetus and newborn (HDFN) caused by maternal anti-A/-B enables timely therapy, thereby preventing the development of kernicterus spectrum disorder. However, previous efforts to establish accurate prediction methods have been only modestly successful. MATERIALS AND METHODS: In a case-control study, we examined 76 samples from mothers and 76 samples from their newborns; 38 with and 38 without haemolysis. The IgG subclass profile of maternal anti-A and anti-B was determined by flow cytometry. Samples from newborns were genetically analysed for the A2 subgroup, secretor and FcγRIIa receptor alleles. RESULTS: Surprisingly, we found a correlation between the newborn secretor allele and haemolysis (p = 0.034). No correlation was found for FcγRIIa alleles. The A2 subgroup was found only in newborns without haemolysis. Unexpectedly, different reaction patterns were found for maternal anti-A and anti-B; consequently, the results were treated separately. For the prediction of haemolysis in A-newborns, the maternal IgG1 subclass determination resulted in an accuracy of 83% at birth. For B-newborns, an accuracy of 91% was achieved by the maternal IgG2 subclass determination. CONCLUSION: We improved the prediction of ABO-HDFN by characterizing maternal anti-A and anti-B by flow cytometry and we presented genetic traits in newborns with correlation to haemolysis. We propose a new understanding of A- and B-substances as immunogens that enhance the maternal immune response and protect the newborn, and we suggest that the development of ABO-HDFN is different when caused by maternal anti-A compared to maternal anti-B.


Assuntos
Eritroblastose Fetal , Mães , Sistema ABO de Grupos Sanguíneos/genética , Incompatibilidade de Grupos Sanguíneos , Estudos de Casos e Controles , Eritroblastose Fetal/genética , Eritroblastose Fetal/prevenção & controle , Feminino , Humanos , Recém-Nascido , Fatores de Proteção
13.
Transfus Med Hemother ; 48(5): 306-315, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34803574

RESUMO

BACKGROUND: Laboratory monitoring of mother, fetus, and newborn in hemolytic disease of fetus and newborn (HDFN) aims to guide clinicians and the immunized women to focus on the most serious problems of alloimmunization and thus minimize the consequences of HDFN in general and of anti-D in particular. Here, we present the current approach of laboratory screening and testing for prevention and monitoring of HDFN at the Copenhagen University Hospital in Denmark. SUMMARY: All pregnant women are typed and screened in the 1st trimester. This serves to identify the RhD-negative pregnant women who at gestational age (GA) of 25 weeks are offered a second screen test and a non-invasive fetal RhD prediction. At GA 29 weeks, and again after delivery, non-immunized RhD-negative women carrying an RhD-positive fetus are offered Rh immunoglobulin. If the 1st trimester screen reveals an alloantibody, antenatal investigation is initiated. This also includes RhD-positive women with alloantibodies. Specificity and titer are determined, the fetal phenotype is predicted by non-invasive genotyping based on cell-free DNA (RhD, K, Rhc, RhC, RhE, ABO), and serial monitoring of titer commences. Based on titers and specificity, monitoring with serial peak systolic velocity measurements in the fetal middle cerebral artery to detect anemia will take place. Intrauterine transfusion is given when fetal anemia is suspected. Monitoring of the newborn by titer and survival of fetal red blood cells by flow cytometry will help predict the length of the recovery of the newborn.

14.
Prenat Diagn ; 41(11): 1380-1388, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34062001

RESUMO

BACKGROUND: The Rh blood group system has considerable clinical importance. The C, c, and E antigens are targets of alloantibodies. Anti-C, anti-c or anti-E alloreactive antibodies produced in pregnant women can cause anemia of a fetus carrying the corresponding antigens. AIMS: Based on NGS technology, we have developed a noninvasive diagnostic assay to predict the fetal blood group of C, c or E antigens by sequencing cell-free DNA (cfDNA) during pregnancy. MATERIALS AND METHODS: The SNVs underlying either the C, c or E antigens were PCR amplified and sequenced using NGS on a MiSeq instrument. The DNA sequences encoding the C, c or E antigen were counted, as were the number of total sequences. Based on the percentage of fetally derived target SNVs inherited from the father, the fetal blood group could be predicted. RESULTS: The results of 55 consecutive RHCE prenatal analyses with postnatal serological blood group determination of 30 newborns showed no discordant results. A threshold discerning positive from negative samples was set at 0.05% specific reads. DISCUSSION: Noninvasive, prenatal prediction of fetal blood groups by sequencing cfDNA for the detection of low-level RHCE*C, RHCE*c and RHCE*E sequences was established as an accurate and robust assay applicable for use in clinical settings.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/normas , Teste Pré-Natal não Invasivo/normas , Sistema do Grupo Sanguíneo Rh-Hr/análise , Dinamarca , Idade Gestacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Teste Pré-Natal não Invasivo/métodos , Teste Pré-Natal não Invasivo/estatística & dados numéricos , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/normas , Reação em Cadeia da Polimerase/estatística & dados numéricos , Valor Preditivo dos Testes
15.
Vox Sang ; 115(7): 586-594, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32342989

RESUMO

BACKGROUND AND OBJECTIVE: Optimal sample storage conditions are essential for non-invasive prenatal testing of cell-free fetal and total DNA. We investigated the effect of long-term storage of plasma samples and extracted cfDNA using qPCR. MATERIALS AND METHODS: Fetal and total cfDNA yield and fetal fraction were calculated before and after storage of plasma for 0-6 years at -25°C. Dilution experiments were performed to investigate PCR inhibition. Extraction with or without proteinase K was used to examine protein dissociation. Storage of extracted cfDNA was investigated by testing aliquots immediately, and after 18 months and 3 years of storage at -25°C. RESULTS: We observed a marked increase in the levels of amplifiable fetal and total DNA in plasma stored for 2-3 years, and fetal fraction was slightly decreased after 3 years of storage. cfDNA detection was independent of proteinase K during DNA extraction in plasma samples stored >2 years, indicating a loss of proteins from DNA over time, which was likely to account for the observed increase in DNA yields. Measured fetal and total DNA quantities, as well as fetal fraction, increased in stored, extracted cfDNA. CONCLUSION: Fetal and total cell-free DNA is readily detectable in plasma after long-term storage at -25°C. However, substantial variation in measured DNA quantities and fetal fraction means caution may be required when using stored plasma and extracted cfDNA for test development or validation purposes.


Assuntos
Preservação de Sangue/métodos , Ácidos Nucleicos Livres/normas , Preservação de Sangue/efeitos adversos , Preservação de Sangue/normas , Ácidos Nucleicos Livres/genética , Feminino , Sangue Fetal/imunologia , Humanos , Reação em Cadeia da Polimerase/normas , Gravidez , Sistema do Grupo Sanguíneo Rh-Hr/genética
16.
Vox Sang ; 115(5): 466-471, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32166750

RESUMO

BACKGROUND AND OBJECTIVES: Fetal RHD genotyping of cell-free maternal plasma DNA from RhD negative pregnant women can be used to guide targeted antenatal and postnatal anti-D prophylaxis for the prevention of RhD immunization. To assure the quality of clinical testing, we conducted an external quality assessment workshop with the participation of 31 laboratories. MATERIALS AND METHODS: Aliquots of pooled maternal plasma from gestational week 25 were sent to each laboratory. One sample was fetal RHD positive, and a second sample was fetal RHD negative. A reporting scheme was supplied for data collection, including questions regarding the methodological setup, results and clinical recommendations. The samples were tested blindly. RESULTS: Different methodological approaches were used; 29 laboratories used qPCR and two laboratories used ddPCR, employing a total of eight different combinations of RHD exon targets. Fetal RHD genotyping was performed with no false-negative and no false-positive results. One inconclusive result was reported for the RHD positive sample. All clinical conclusions were satisfactory. CONCLUSION: This external quality assessment workshop demonstrates that despite the different approaches taken to perform the clinical assays, fetal RHD genotyping is a reliable laboratory assay to guide targeted use of Rh prophylaxis in a clinical setting.


Assuntos
Técnicas de Genotipagem/normas , Sistema do Grupo Sanguíneo Rh-Hr/genética , Éxons , Feminino , Feto/metabolismo , Humanos , Plasma/química , Plasma/metabolismo , Gravidez , Diagnóstico Pré-Natal/normas , Reação em Cadeia da Polimerase em Tempo Real , Sistema do Grupo Sanguíneo Rh-Hr/sangue , Imunoglobulina rho(D)
17.
Transfus Med Hemother ; 47(1): 45-53, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32110193

RESUMO

INTRODUCTION: ABO blood group incompatibility between a pregnant woman and her fetus as a cause of morbidity or mortality of the fetus or newborn remains an important, albeit rare, risk. When a pregnant woman has a high level of anti-A or anti-B IgG antibodies, the child may be at risk for hemolytic disease of the fetus and newborn (HDFN). Performing a direct prenatal determination of the fetal ABO blood group can provide valuable clinical information. OBJECTIVE: Here, we report a next generation sequencing (NGS)-based assay for predicting the prenatal ABO blood group. MATERIALS AND METHODS: A total of 26 plasma samples from 26 pregnant women were tested from gestational weeks 12 to 35. Of these samples, 20 were clinical samples and 6 were test samples. Extracted cell-free DNA was PCR-amplified using 2 primer sets followed by NGS. NGS data were analyzed by 2 different methods, FASTQ analysis and a grep search, to ensure robust results. The fetal ABO prediction was compared with the known serological infant ABO type, which was available for 19 samples. RESULTS: There was concordance for 19 of 19 predictable samples where the phenotype information was available and when the analysis was done by the 2 methods. For immunized pregnant women (n = 20), the risk of HDFN was predicted for 12 fetuses, and no risk was predicted for 7 fetuses; one result of the clinical samples was indeterminable. Cloning and sequencing revealed a novel variant harboring the same single nucleotide variations as ABO*O.01.24 with an additional c.220C>T substitution. An additional indeterminable result was found among the 6 test samples and was caused by maternal heterozygosity. The 2 indeterminable samples demonstrated limitations to the assay due to hybrid ABO genes or maternal heterozygosity. CONCLUSIONS: We pioneered an NGS-based fetal ABO prediction assay based on a cell-free DNA analysis from maternal plasma and demonstrated its application in a small number of samples. Based on the calculations of variant frequencies and ABO*O.01/ABO*O.02 heterozygote frequency, we estimate that we can assign a reliable fetal ABO type in approximately 95% of the forthcoming clinical samples of type O pregnant women. Despite the vast genetic variations underlying the ABO blood groups, many variants are rare, and prenatal ABO prediction is possible and adds valuable early information for the prevention of ABO HDFN.

18.
Transfusion ; 59(10): 3264-3274, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415105

RESUMO

BACKGROUND: In the past century, blood group determination using serology has been the standard method. Now, molecular methods are gaining traction, which provide additional and easily accessible information. Here we designed and validated a high-throughput extended genotyping setup. STUDY DESIGN AND METHODS: We developed 35 competitive allele-specific polymerase chain reaction assays for genotyping of blood donors. Samples from 1034 Danish blood donors were genotyped, and 45,314 red blood cell antigens and 6148 platelet antigens were predicted. Predicted phenotypes were compared with 16,119 serologic phenotypes. RESULTS: We found 62 discrepancies of which 43 were due to serology. After exclusion of the discrepancies caused by serology, the accuracy of genotyping was 99.9%. Of 17 discrepancies caused by the genotype, three were incorrect antigen-negative predictions and could potentially, as the solitary analysis, have caused an adverse transfusion reaction. CONCLUSION: We have established a robust and highly accurate blood group genotyping system with a very high capacity for screening blood donors. The system represents a significant improvement over the former serotyping-only procedure. Almost all new technology in medicine incurs increased costs, but the presented efficient genotyping system is a rare example of a significant qualitative and quantitative technologic progress that is also more cost-efficient than previous technologies.


Assuntos
Alelos , Antígenos de Plaquetas Humanas/genética , Doadores de Sangue , Antígenos de Grupos Sanguíneos/genética , Genótipo , Técnicas de Genotipagem , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase
19.
Vox Sang ; 114(4): 386-393, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30834546

RESUMO

BACKGROUND AND OBJECTIVES: Fetal RHD genotyping of cell-free fetal DNA from RhD-negative pregnant women can be used to guide targeted antenatal and postnatal anti-D prophylaxis for the prevention of RhD immunization. To assure the quality of clinical testing, we conducted an external quality assessment workshop with the participation of 28 laboratories. MATERIALS AND METHODS: Aliquots of pooled maternal plasma were sent to each laboratory. One sample was positive, and the second sample was negative for fetal RHD, verified by pre-workshop testing using quantitative real-time PCR (qPCR) analysis of RHD exons 4, 5, 7 and 10. Plasma samples were shipped at room temperature. A reporting scheme was supplied for data collection, including questions regarding the methodological setup, results and clinical recommendations. Different methodological approaches were used, all employing qPCR with a total of eight different combinations of RHD exon targets. The samples were tested blindly. RESULTS: Fetal RHD genotyping was performed with no false-negative and no false-positive results. One inconclusive result was reported for the RHD-positive sample, and four inconclusive results were reported for the RHD-negative sample. All clinical conclusions were satisfactory. CONCLUSION: This external quality assessment workshop demonstrates that despite the different approaches taken to perform the clinical assays, fetal RHD genotyping is a reliable laboratory assay to guide targeted use of Rh prophylaxis in a clinical setting.


Assuntos
Doenças Fetais/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real , Isoimunização Rh/prevenção & controle , Sistema do Grupo Sanguíneo Rh-Hr/sangue , Imunoglobulina rho(D)/genética , Educação Continuada , Éxons , Feminino , Doenças Fetais/genética , Feto , Genótipo , Humanos , Gravidez , Diagnóstico Pré-Natal/métodos , Garantia da Qualidade dos Cuidados de Saúde , Controle de Qualidade , Qualidade da Assistência à Saúde , Reprodutibilidade dos Testes , Isoimunização Rh/genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , Imunoglobulina rho(D)/sangue , Imunoglobulina rho(D)/química
20.
Vox Sang ; 114(1): 95-102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30421425

RESUMO

BACKGROUND AND OBJECTIVES: The International Society of Blood Transfusion (ISBT) Working Party for Red Cell Immunogenetics and Blood Group Terminology meets in association with the ISBT congress and has met three times since the last report: at the international meetings held in Dubai, United Arab Emirates, September 2016 and Toronto, Canada, June 2018; and at a regional congress in Copenhagen, Denmark, June 2017 for an interim session. METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature and classification were discussed. New blood group antigens were approved and named according to the serologic and molecular evidence presented. RESULTS AND CONCLUSIONS: Fifteen new blood group antigens were added to eight blood group systems. One antigen was made obsolete based on additional data. Consequently, the current total of blood group antigens recognized by the ISBT is 360, of which 322 are clustered within 36 blood groups systems. The remaining 38 antigens are currently unassigned to a known system. Clinically significant blood group antigens continue to be discovered, through serology/sequencing and/or recombinant or genomic technologies.


Assuntos
Transfusão de Sangue , Congressos como Assunto , Imunogenética , Terminologia como Assunto , Canadá , Dinamarca , Humanos , Sociedades Científicas , Emirados Árabes Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...