Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611223

RESUMO

Epoxidized vegetable oils and limonene dioxide, a bis-epoxide derived from the terpene limonene, are photo-copolymerized to yield highly crosslinked networks with high conversion of all epoxide groups at ambient temperature. However, the slow polymerization of such biobased formulation polymerizes is not compatible for a use in a commercial SLA 3D printer. Adding an acrylated epoxidized vegetable oil to the bis-epoxide leads to a decrease of curing time and an increase in LDO conversion to polymer. For example, in a 60:40 wt:wt mixture of LDO and epoxidized soybean oil, the conversions of both exocyclic and endocyclic epoxide groups of LDO are ≥95%. These formulations were successfully used in SLA 3D printers, leading to generation of hard and dry complex objects using biobased formulations.

2.
ACS Appl Mater Interfaces ; 15(23): 27832-27844, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37257196

RESUMO

Metal nanoparticles (NP) supported on TiO2 are known to be efficient photocatalysts for solar-to-chemical energy conversion. While TiO2 decorated with copper NPs has the potential to become an attractive system, the poor oxidative stability of Cu severely limits its applicability. In this work, we demonstrate that, when Cu NPs supported on TiO2 nanobelts (NBs) are engaged in the photocatalytic generation of H2 from water under light illumination, Cu is not only oxidized in CuO but also dissolved under the form of Cu+/Cu2+ ions, leading to a continuous reconstruction of nanoparticles via Ostwald ripening. By nanoencapsulating the CuOx (Cu/CuO/Cu2O) NPs by a few layers of carbon supported on TiO2 (TC@C), Ostwald ripening can be suppressed. Simultaneously, the resulting CuOx@C NPs are photoreduced under light illumination to generate Cu@C NPs. This photoswitching strategy allows the preparation of a Cu plasmonic photocatalyst with enhanced activity for H2 production. Remarkably, the photocatalyst is even active when illuminated with visible light, indicating a clear plasmonic enhancement of photocatalytic activity from the surface plasmonic resonance (SPR) effect of Cu NPs. Three-dimensional electromagnetic wave-frequency domain (3D-EWFD) simulations were conducted to confirm the SPR enhancement. This advance bodes for the development of scalable multifunctional Cu-based plasmonic photocatalysts for solar energy transfer.

3.
Chem Commun (Camb) ; 58(82): 11519-11522, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36149362

RESUMO

Three kinds of Pt anchoring on heteroatom-doped graphene were synthesised and their effects on catalytic performance were discussed. The introduction of N and P into graphene is helpful to decrease the Pt particle size with a homogeneous distribution and favor the electronic configuration for the ORR.

4.
Materials (Basel) ; 15(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806600

RESUMO

The purpose of this study was to investigate the properties of hardened alkali-activated concrete, which is considered an eco-friendly alternative to Portland cement concrete. In this paper, the precursors for alkali-activated concrete preparations are blends of fly ash and ground-granulated blast-furnace slag in three slag proportions: 5%, 20%, and 35%, expressed as a percentage of fly ash mass. Thus, three concretes were designed and cast, denominated as AAC5, AAC20, and AAC35. Their physical and mechanical characteristics were investigated at 28 and 180 days, as well as their properties of chloride ion transport. The modified NT BUILD 492 migration test was applied to determine the chloride ions' penetration of the alkali-activated concretes. Improvement of mechanical strength and resistance to chloride aggression was observed with ground-granulated blast-furnace slag content increase in the compositions of the tested concretes. Mercury intrusion porosimetry tests provided insight into the open pore structures of concretes. A significant decrease in the total pore volume of the concrete and a change in the nature of the pore diameter distribution due to the addition of ground granulated blast furnace slag were demonstrated.

5.
Chemistry ; 28(47): e202200748, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35666681

RESUMO

Carbon Dots (CDs) are carbon nanoparticles which were discovered in 2004. Despite two decades of intensive work from the scientific community and a colossal amount of gathered experimental data, no definitive consensus exists to date on several key aspects such as the actual definition of CDs and the origin of their emissive properties. This review proposes a critical evaluation of these fundamental questions. Lay persons will also find here an alternative introduction to the CDs domain, including synthetic strategies, photophysical properties, as well as challenges and outlook of this exciting new area.


Assuntos
Carbono , Pontos Quânticos
6.
Nanomaterials (Basel) ; 12(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335779

RESUMO

Insertion polynorbornenes (PBNEs) are rigid-rod polymers that have very high glass transition temperatures (Tg). In this study, two functional PNBEs were electrospun in the presence of a variety of cross-linkers, resulting in fibers with Tgs greater than 300 °C. The fibers are long (several mm), rigid, and with diameters that can be tuned in the range 300 nm-10 µm. The electrospinning process can be used to encapsulate dyes or graphene dots. Due to the high cross-linking density of the fiber, dye leaching is prevented. In contrast with other rigid-rod polymers, electrospinning of PNBE is facile and can be performed at injection rates as high as 1 mL/min.

7.
Angew Chem Int Ed Engl ; 60(49): 25897-25904, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545680

RESUMO

The low conductivity of Na+ electrolytes in solid polymer electrolytes (SPEs) curtails the development of Na polymer batteries. In this study, NaClO4 (3-24 wt %, 90-9:1 O:Na) is dissolved in statistical copolymers of ethylene oxide (EO) and propylene oxide (PO) (0-20 mol %). Remarkably, the conductivity of these SPEs increases as the concentration of Na+ decreases, thus departing from the usual Nernstian behavior. Using a combination of calorimetric measurements and molecular dynamic simulations, this unusual phenomenon is attributed to the presence of physical cross-links generated by Na+ . As a result, polymers containing a low salt concentration (3 wt %) display a drastically enhanced ionic conductivity (up to 0.2 10-4  S cm-1 at 25 °C), thus paving the way for the design of all-solid-state PEO-based sodium batteries operational at room temperature.

8.
JACS Au ; 1(6): 843-851, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467337

RESUMO

Thanks to their photophysical properties, both organic molecular fluorophores (MFs) and inorganic quantum dots (QDs) are extensively used for bioimaging applications. However, limitations such as photobleaching for the former or blinking, size, and toxicity for the latter still constitute a challenge for numerous applications. We report here that embedding MFs in graphitic carbon dots (GDs) results in fluorophores which entirely tackle this challenge. Characterized by ultranarrow, bright, and excitation-independent emission devoid of blinking and photobleaching, these hybrid-featured nanoparticles also demonstrate their unique photophysical performances at the single-nanoparticle scale, making them appealing candidates for bioimaging applications.

9.
ACS Appl Mater Interfaces ; 13(29): 34658-34670, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254774

RESUMO

Photoelectrochemical (PEC) hydrogen evolution has been acknowledged as a promising "green" technique to convert solar energy into clean chemical fuel. Photoanodes play a key role in determining the performance of PEC systems, spurring numerous efforts to develop advanced materials as well as structures to improve the photoconversion efficiency. In this work, we report the rational design of a plasmonic hierarchical nanorod array, composed of oriented one-dimensional (1D) CdS nanorods decorated with a uniformly wrapped graphite-like carbon (CPDA) layer and Au nanoparticles (Au NPs), as highly efficient photoanode materials. An interfacial in situ reduction-graphitization method has been conducted to prepare the CdS/CPDA/Au nanoarchitecture, where polydopamine (PDA) coating was used as a C source and a reductant. The CdS/CPDA/Au nanoarray photoanode demonstrates superior photoconversion efficiency with a photocurrent density of 8.74 mA/cm2 and an IPCE value (480 nm) of 30.2% (at 1.23 V vs RHE), under simulated sunlight irradiation, which are 12.7 and 13.5 times higher than pristine CdS. The significant enhancement of PEC performance is mainly benefited from the increase of the entire quantum yield and efficiency due to the formation of a Schottky rectifier, localized surface plasmon resonance (LSPR)-enhanced light absorption, and promoted hot-electron injection from interlayered graphene-like carbon. More importantly, thanks to the inhibited charge carrier recombination process and transferred oxidation reaction sites, the fabricated CdS/CPDA/Au photoelectrode exhibits lengthened electron lifetimes and better photostability, illustrating its wonderful potential for future PEC application.

10.
ACS Appl Mater Interfaces ; 13(29): 34714-34723, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269047

RESUMO

Recently, localized surface plasmon resonances (SPRs) of metallic nanoparticles (NPs) have been widely used to construct plasmonic nanohybrids for heterogeneous photocatalysis. For example, the combination of plasmonic Au NPs and TiO2 provides pure TiO2 visible-light activity. The SPR effect induces an electric field and consequently enhances light scattering and absorption, favoring the transfer of photon energy to hot carriers for catalytic reactions. Numerous approaches have been dedicated to the improvement of SPR absorption in photocatalysts. Here, we have designed a core@shell-satellite nanohybrid catalyst whereby an Ag NP core, as a plasmonic resonator featuring unique dual functions of strong scattering and near-field enhancement, is encapsulated by SiO2 and TiO2 layers in sequence, with Au NPs on the outer surface, Ag@SiO2@TiO2-Au, for efficient plasmonic photocatalysis. By varying the size and number of Ag NP cores, the Au SPR can be tailored over the visible and near-infrared spectral region to reabsorb the scattered photons. In the presence of the Ag core, the incident light is efficiently confined in the reaction suspension by undergoing multiple scattering, thus leading to an increase of the optical path to the photocatalysis. Moreover, using numerical analysis and experimental verifications, we demonstrate that the Ag core also induces a strong near-field enhancement at the Au-TiO2 interface via SPR coupling with Au. Consequently, the activity of the TiO2-Au plasmonic photocatalyst is significantly enhanced, resulting in a high H2 production rate under visible light. Thus, the design of a single structural unit with strong scattering and field enhancement, induced by a plasmonic resonator, is a highly effective strategy to boost photocatalytic activity.

11.
ACS Appl Mater Interfaces ; 13(26): 30512-30523, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170669

RESUMO

Nitrogen and phosphorus-codoped graphene dots supported on nitrogen-doped three-dimensional graphene (N, P-GDs/N-3DG) have been synthesized by a facile freeze-annealing process. On the surface of the 3D interconnected porous structure, the N, P-GDs are uniformly dispersed. The as-prepared N, P-GDs/N-3DG material served as a metal-free catalyst for oxygen reduction reaction (ORR) in an alkaline medium and evaluated by a rotating ring-disk electrode. The N, P-GDs/N-3DG catalyst exhibits excellent ORR activity, which is comparable to that of the commercial Pt/C catalyst. Furthermore, it exhibits a higher tolerance to methanol and better stability than the Pt/C. This enhanced electrochemical catalytic performance can be ascribed to the presence of abundant functional groups and edge defects. This study indicates that P-N bonded structures play a vital role as the active sites in ORR.

12.
Chem Commun (Camb) ; 57(55): 6784-6787, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34137389

RESUMO

Lanthanide dodecyl sulfates, LnDSx, are remarkably effective to catalyze the reaction of diepoxides with diamines in the liquid and solid states, a key reaction in the formation of epoxy thermosets. Among all lanthanides, the lanthanum complex LaNa(DS)4(H2O)2 is the most active, allowing a decrease of 60 kJ mol-1 of the activation energy between polyethylene imine and limonene dioxide, a biobased epoxy monomer.


Assuntos
Compostos de Epóxi/química , Elementos da Série dos Lantanídeos/química , Sulfatos/química , Temperatura , Catálise
13.
Chem Commun (Camb) ; 57(45): 5546-5549, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33969835

RESUMO

An efficient asymmetric hydrogenation of cyclic tetrasubstituted-olefinic dehydroamino acid derivatives has been achieved with a Rh-ArcPhos catalyst, affording a series of α-acylamino-ß-alkyl tetrahydropyranones with two contiguous chiral centers in up to 96% ee and 1000 TON.


Assuntos
Aminoácidos/síntese química , Cicloparafinas/síntese química , Catálise , Complexos de Coordenação/química , Temperatura Alta , Hidrogênio/química , Hidrogenação , Cinética , Ligantes , Estrutura Molecular , Pressão , Ródio/química , Estereoisomerismo
14.
Angew Chem Int Ed Engl ; 60(12): 6305-6309, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326671

RESUMO

An efficient asymmetric hydroesterfication of diarylmethyl carbinols is developed for the first time with a Pd-WingPhos catalyst, resulting in a series of chiral 4-aryl-3,4-dihydrocoumarins in excellent enantioselectivities and good yields. The method features mild reaction conditions, a broad substrate scope, use of easily accessible starting materials, and low palladium loadings. A plausible stereochemical model is also proposed with the Pd-WingPhos catalyst. This method has enabled a 4-step asymmetric synthesis of (R)-tolterodine from readily available starting materials.

15.
ChemSusChem ; 13(6): 1226-1254, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31797566

RESUMO

High-performance supercapacitors have attracted great attention due to their high power, fast charging/discharging, long lifetime, and high safety. However, the generally low energy density and overall device performance of supercapacitors limit their applications. In recent years, the design of rational electrode materials has proven to be an effective pathway to improve the capacitive performances of supercapacitors. Layered double hydroxides (LDHs), have shown great potential in new-generation supercapacitors, due to their unique two-dimensional layered structures with a high surface area and tunable composition of the host layers and intercalation species. Herein, recent progress in LDH-based, LDH-derived, and composite-type electrode materials targeted for applications in supercapacitors, by tuning the chemical/metal composition, growth morphology, architectures, and device integration, is reviewed. The complicated relationships between the composition, morphology, structure, and capacitive performance are presented. A brief projection is given for the challenges and perspectives of LDHs for energy research.

16.
Sci Rep ; 9(1): 1213, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718718

RESUMO

Organic cathode materials for lithium batteries are becoming increasingly popular because they have high theoretical redox voltage, high gravimetric capacity, low cost, easy processing and sustainability. However, their development is limited by their solubility in the electrolyte, which leads to rapid deterioration of the battery upon cycling. We developed a Janus membrane, which consists of two layers - a commercial polypropylene separator (Celgard) and a 300-600 nm layer of exfoliated graphite that was applied by a simple and environmentally friendly process. The submicron graphite layer is only permeable to Li+ and it drastically improves the battery performance, as measured by capacity retention and high coulombic efficiency, even at 2C rates. Post-mortem analysis of the battery indicates that the new membrane protects the anode against corrosion, and cathode dissolution is reduced. This graphite-based membrane is expected to greatly expedite the deployment of batteries with organic cathodes.

17.
Chem Asian J ; 12(16): 2057-2061, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28649783

RESUMO

The catalytic polymerization of ethylene is performed in water pressurized with CO2 . The size of the initial monomer droplets and of the resulting polymer particles can be varied by simply changing the CO2 pressure. Furthermore, at identical ethylene partial pressure, the polymerizations performed in the presence of CO2 are significantly faster than in its absence. Thus, the combination of CO2 and water is a promising green solvent for catalytic emulsion polymerizations.

18.
J Vis Exp ; (120)2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28287522

RESUMO

Norbornene can be polymerized by a variety of mechanisms, including insertion polymerization whereby the double bond is polymerized and the bicyclic nature of the monomer is conserved. The resulting polymer, polynorbornene, has a very high glass transition temperature, Tg, and interesting optical and electrical properties. However, the polymerization of functional norbornenes by this mechanism is complicated by the fact that the endo substituted norbornene monomer has, in general, a very low reactivity. Furthermore, the separation of the endo substituted monomer from the exo monomer is a tedious task. Here, we present a simple protocol for the polymerization of substituted norbornenes (endo:exo ca. 80:20) bearing either a carboxylic acid or a pendant double bond. The process does not require that both isomers be separated, and proceeds with low catalyst loadings (0.01 to 0.02 mol%). The polymer bearing pendant double bonds can be further transformed in high yield, to afford a polymer bearing pendant epoxy groups. These simple procedures can be applied to prepare polynorbornenes with a variety of functional groups, such as esters, alcohols, imides, double bonds, carboxylic acids, bromo-alkyls, aldehydes and anhydrides.


Assuntos
Compostos Bicíclicos com Pontes/análise , Polímeros/química , Ácidos Carboxílicos , Catálise , Imidas/análise , Isomerismo , Conformação Molecular , Norbornanos , Polimerização
19.
ACS Appl Mater Interfaces ; 9(9): 8142-8150, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28212485

RESUMO

We report the two-step synthesis of a core@shell nanohybrid material for visible-to-near-infrared (NIR) photocatalysis. The core is constituted of NaGdF4:Er3+, Yb3+ upconverting nanoparticles (UCNPs). A bismuth ferrite (BFO) shell is assembled around the UCNPs via a hydrothermal process. The photocatalytic degradation assays of methylene orange and 4-chlorophenol reveal that these core@shell nanostructures possess remarkably enhanced reaction activity under visible and NIR irradiation, compared to the BFO powder alone and the BFO-UCNP mixture. Photo-charge scavenger tests and fluorescent assays indicate that hydroxyl radicals play a pivotal role in the photodegradation mechanism. The enhanced photoactivity of the core@shell structure is attributed to the NIR radiation which is converted into visible light by UCNPs, and which is then captured by BFO via a nonradiative luminescence resonance energy transfer process. Therefore, this core@shell architecture optimizes solar energy use by efficiently harvesting visible and NIR photons.

20.
Chemphyschem ; 18(9): 986-1006, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28164418

RESUMO

This review article highlights the recent advances of the synthesis and application of metal nanoparticles (NPs) fabricated via pulsed laser ablation in liquid (PLAL) phase and also introduces relevant NP formation mechanisms. Although wet-chemical approaches have been well established to synthesize colloidal metal NPs with various components and structures, some inherent drawbacks, such as reaction residuals and/or contaminations, largely limit some of their applications. The PLAL method has recently been developed as an alternative approach and received increasing attention for colloidal NP preparation, without involving complicated chemical reactions. In certain cases, by using PLAL, ligand-free and surface-clean NPs can be obtained and well dispersed in liquid, leading to the formation of a "surface-clean" NP dispersion. This unique feature renders PLAL-synthesised metal NPs attractive candidates for many interesting applications in catalysis, biology, sensing, and clean energy generation and storage. We conclude this review by proposing several interesting research directions and future challenges, from PLAL fabrication to applications. We hope this review can serve as a good reference and help with the further development of PLAL-NPs and their diverse applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...