Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 27(6): 698-707.e7, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32243812

RESUMO

Escherichia coli broadly colonize the intestinal tract of humans and produce a variety of small molecule signals. However, many of these small molecules remain unknown. Here, we describe a family of widely distributed bacterial metabolites termed the "indolokines." In E. coli, the indolokines are upregulated in response to a redox stressor via aspC and tyrB transaminases. Although indolokine 1 represents a previously unreported metabolite, four of the indolokines (2-5) were previously shown to be derived from indole-3-carbonyl nitrile (ICN) in the plant pathogen defense response. We show that the indolokines are produced in a convergent evolutionary manner relative to plants, enhance E. coli persister cell formation, outperform ICN protection in an Arabidopsis thaliana-Pseudomonas syringae infection model, trigger a hallmark plant innate immune response, and activate distinct immunological responses in primary human tissues. Our molecular studies link a family of cellular stress-induced metabolites to defensive responses across bacteria, plants, and humans.


Assuntos
Escherichia coli/metabolismo , Indóis/metabolismo , Regulação para Cima , Animais , Arabidopsis/metabolismo , Escherichia coli/citologia , Fezes/microbiologia , Humanos , Indóis/química , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Estresse Oxidativo , Transdução de Sinais
2.
Nat Commun ; 10(1): 3444, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371717

RESUMO

Plants synthesize numerous ecologically specialized, lineage-specific metabolites through biosynthetic gene duplication and functional specialization. However, it remains unclear how duplicated genes are wired into existing regulatory networks. We show that the duplicated gene CYP82C2 has been recruited into the WRKY33 regulon and indole-3-carbonylnitrile (ICN) biosynthetic pathway through exaptation of a retroduplicated LINE retrotransposon (EPCOT3) into an enhancer. The stepwise development of a chromatin-accessible WRKY33-binding site on EPCOT3 has potentiated the regulatory neofunctionalization of CYP82C2 and the evolution of inducible defense metabolite 4-hydroxy-ICN in Arabidopsis thaliana. Although transposable elements (TEs) have long been recognized to have the potential to rewire regulatory networks, these results establish a more complete understanding of how duplicated genes and TEs contribute in concert to chemical diversity and pathogen defense.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/imunologia , Regulon/genética , Regulon/fisiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Glucosinolatos/metabolismo , Indóis/metabolismo , Isoleucina/análogos & derivados , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/patogenicidade , Metabolismo Secundário , Tiazóis/metabolismo , Fatores de Transcrição/metabolismo
3.
Annu Rev Plant Biol ; 70: 585-604, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035830

RESUMO

Over several decades, glucosinolates have become a model system for the study of specialized metabolic diversity in plants. The near-complete identification of biosynthetic enzymes, regulators, and transporters has provided support for the role of gene duplication and subsequent changes in gene expression, protein function, and substrate specificity as the evolutionary bases of glucosinolate diversity. Here, we provide examples of how whole-genome duplications, gene rearrangements, and substrate promiscuity potentiated the evolution of glucosinolate biosynthetic enzymes, regulators, and transporters by natural selection. This in turn may have led to the repeated evolution of glucosinolate metabolism and diversity in higher plants.


Assuntos
Duplicação Gênica , Glucosinolatos , Rearranjo Gênico , Plantas
4.
Front Plant Sci ; 10: 1775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082343

RESUMO

The plant kingdom produces hundreds of thousands of specialized bioactive metabolites, some with pharmaceutical and biotechnological importance. Their biosynthesis and function have been studied for decades, but comparatively less is known about how transcription factors with overlapping functions and contrasting regulatory activities coordinately control the dynamics and output of plant specialized metabolism. Here, we performed temporal studies on pathogen-infected intact host plants with perturbed transcription factors. We identified WRKY33 as the condition-dependent master regulator and MYB51 as the dual functional regulator in a hierarchical gene network likely responsible for the gene expression dynamics and metabolic fluxes in the camalexin and 4-hydroxy-indole-3-carbonylnitrile (4OH-ICN) pathways. This network may have also facilitated the regulatory capture of the newly evolved 4OH-ICN pathway in Arabidopsis thaliana by the more-conserved transcription factor MYB51. It has long been held that the plasticity of plant specialized metabolism and the canalization of development should be differently regulated; our findings imply a common hierarchical regulatory architecture orchestrated by transcription factors for specialized metabolism and development, making it an attractive target for metabolic engineering.

5.
Plant Cell ; 29(8): 1907-1926, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28733420

RESUMO

Lignification of cell wall appositions is a conserved basal defense mechanism in the plant innate immune response. However, the genetic pathway controlling defense-induced lignification remains unknown. Here, we demonstrate the Arabidopsis thaliana SG2-type R2R3-MYB transcription factor MYB15 as a regulator of defense-induced lignification and basal immunity. Loss of MYB15 reduces the content but not the composition of defense-induced lignin, whereas constitutive expression of MYB15 increases lignin content independently of immune activation. Comparative transcriptional and metabolomics analyses implicate MYB15 as necessary for the defense-induced synthesis of guaiacyl lignin and the basal synthesis of the coumarin metabolite scopoletin. MYB15 directly binds to the secondary wall MYB-responsive element consensus sequence, which encompasses the AC elements, to drive lignification. The myb15 and lignin biosynthetic mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with defense-induced lignin having a major role in basal immunity. A scopoletin biosynthetic mutant also shows increased susceptibility independently of immune activation, consistent with a role in preformed defense. Our results support a role for phenylalanine-derived small molecules in preformed and inducible Arabidopsis defense, a role previously dominated by tryptophan-derived small molecules. Understanding the regulatory network linking lignin biosynthesis to plant growth and defense will help lignin engineering efforts to improve the production of biofuels and aromatic industrial products as well as increase disease resistance in energy and agricultural crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Lignina/metabolismo , Imunidade Vegetal , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Lignina/biossíntese , Fenóis/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Pseudomonas syringae/fisiologia , Escopoletina/farmacologia , Homologia de Sequência de Aminoácidos , Solubilidade , Fatores de Transcrição/genética
6.
Methods Mol Biol ; 1578: 61-79, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220416

RESUMO

The biogenesis and functionality of pattern recognition receptors (PRRs) are critical for robust plant immune responses. Here, we present methods to determine the N-glycosylation state and ligand-induced activity of these receptors for comparative quantitative analysis. These techniques can be used to identify mutants and chemical inhibitors affecting PRR biogenesis and functionality. When combined, these techniques can provide useful insights on biological processes necessary to synthesize a properly membrane-localized and ligand-responsive PRR.


Assuntos
Arabidopsis/metabolismo , Receptores de Reconhecimento de Padrão/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Western Blotting , Glicosilação , Ligantes , Mutação , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo
7.
Phytochemistry ; 131: 26-43, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27569707

RESUMO

Plants are unrivaled in the natural world in both the number and complexity of secondary metabolites they produce, and the ubiquitous phenylpropanoids and the lineage-specific glucosinolates represent two such large and chemically diverse groups. Advances in genome-enabled biochemistry and metabolomic technologies have greatly increased the understanding of their metabolic networks in diverse plant species. There also has been some progress in elucidating the gene regulatory networks that are key to their synthesis, accumulation and function. This review highlights what is currently known about the gene regulatory networks and the stable sub-networks of transcription factors at their cores that regulate the production of these plant secondary metabolites and the differentiation of specialized cell types that are equally important to their defensive function. Remarkably, some of these core components are evolutionarily conserved between secondary metabolism and specialized cell development and across distantly related plant species. These findings suggest that the more ancient gene regulatory networks for the differentiation of fundamental cell types may have been recruited and remodeled for the generation of the vast majority of plant secondary metabolites and their specialized tissues.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Lignina/metabolismo , Metabolismo Secundário
8.
Nature ; 525(7569): 376-9, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26352477

RESUMO

Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens. Here we start with a single pathogen-induced P450 (ref. 5), CYP82C2, and use a combination of untargeted metabolomics and coexpression analysis to uncover the complete biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a previously unknown Arabidopsis metabolite. This metabolite harbours cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature; furthermore, the aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. Arabidopsis 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defence. Arabidopsis has been the pre-eminent model system for studying the role of small molecules in plant innate immunity; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defence response. These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defence.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Indóis/metabolismo , Nitrilas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosídeos/biossíntese , Imunidade Inata/genética , Imunidade Inata/imunologia , Metabolômica , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Saccharomyces cerevisiae/genética , Metabolismo Secundário , Tiazóis/metabolismo , Nicotiana/genética , Transcriptoma , Virulência
9.
Front Plant Sci ; 6: 1108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779203

RESUMO

Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect "non-self," "damaged-self," and "altered-self"- associated molecular patterns and translate these "danger" signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gß and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

11.
Plant Cell ; 22(3): 973-90, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20348432

RESUMO

Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of beta-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid-jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.


Assuntos
Arabidopsis/imunologia , Interações Hospedeiro-Patógeno , Raízes de Plantas/imunologia , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Etilenos/metabolismo , Flagelos/metabolismo , Glucanos/metabolismo , Indóis/metabolismo , N-Glicosil Hidrolases/metabolismo , Oxilipinas/metabolismo , Peptidoglicano/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Pseudomonas , RNA de Plantas/genética , Ácido Salicílico/metabolismo , Tiazóis/metabolismo
12.
Nat Genet ; 41(2): 258-63, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19122662

RESUMO

The functions of the plant body rely on interactions among distinct and nonequivalent cell types. The comparison of transcriptomes from different cell types should expose the transcriptional networks that underlie cellular attributes and contributions. Using laser microdissection and microarray profiling, we have produced a cell type transcriptome atlas that includes 40 cell types from rice (Oryza sativa) shoot, root and germinating seed at several developmental stages, providing patterns of cell specificity for individual genes and gene classes. Cell type comparisons uncovered previously unrecognized properties, including cell-specific promoter motifs and coexpressed cognate binding factor candidates, interaction partner candidates and hormone response centers. We inferred developmental regulatory hierarchies of gene expression in specific cell types by comparison of several stages within root, shoot and embryo.


Assuntos
Padronização Corporal/genética , Perfilação da Expressão Gênica , Oryza/citologia , Oryza/genética , Atlas como Assunto , Sequência de Bases , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética , Oryza/embriologia , Oryza/fisiologia , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/embriologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/crescimento & desenvolvimento , Sementes/citologia , Sementes/genética
13.
Science ; 323(5910): 95-101, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19095898

RESUMO

The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Flagelina/imunologia , Glucosinolatos/metabolismo , Imunidade Inata , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucanos/biossíntese , Glicosídeo Hidrolases/metabolismo , Hidrólise , Indóis/metabolismo , Indóis/farmacologia , Mutação , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Fragmentos de Peptídeos/imunologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant Cell ; 17(7): 1994-2008, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15937226

RESUMO

Generally, cell division can be uncoupled from multicellular development, but more recent evidence suggests that cell cycle progression and arrest is coupled to organogenesis and growth. We describe a recessive mutant, swellmap (smp), with reduced organ size and cell number. This defect is partially compensated for by an increase in final cell size. The mutation causes a precocious arrest of cell proliferation in the organ primordium and possibly reduces the rate of cell division there. The mutation proved to be an epigenetic mutation (renamed smp(epi)) that defined a single locus, SMP1, but affected the expression of both SMP1 and a second very similar gene, SMP2. Both genes encode CCHC zinc finger proteins with similarities to step II splicing factors involved in 3' splice site selection. Genetic knockouts demonstrate that the genes are functionally redundant and essential. SMP1 expression is associated with regions of cell proliferation. Overexpression of SMP1 produced an increase in organ cell number and a partial decrease in cell expansion. The smp(epi) mutation does not affect expression of eukaryotic cell cycle regulator genes CYCD3;1 and CDC2A but affects expression of the cell proliferation gene STRUWWELPETER (SWP) whose protein has similarities to Med150/Rgr1-like subunits of the Mediator complex required for transcriptional activation. Introduction of SWP cDNA into smp(epi) plants fully restored them to wild-type, but the expression of both SMP1 and SMP2 were also restored in these lines, suggesting a physical interaction among the three proteins and/or genes. We propose that step II splicing factors and a transcriptional Mediator-like complex are involved in the timing of cell cycle arrest during leaf development.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigênese Genética/genética , Genes cdc/fisiologia , Elementos Reguladores de Transcrição/genética , Ribonucleoproteínas/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Sequência de Bases/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Crescimento Celular , Proliferação de Células , DNA Complementar/análise , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/genética , Genes Recessivos/genética , Dados de Sequência Molecular , Mutação/genética , Folhas de Planta/genética , Splicing de RNA/genética , Fatores de Processamento de RNA , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
15.
Plant Physiol ; 138(2): 767-77, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15894745

RESUMO

Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Folhas de Planta/anatomia & histologia , Espermina Sintase/genética , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Mutação , Folhas de Planta/genética , Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espermina Sintase/metabolismo
16.
Plant Cell ; 14(11): 2707-22, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12417696

RESUMO

The formation of the venation pattern in leaves is ideal for examining signaling pathways that recognize and respond to spatial and temporal information, because the pattern is two-dimensional and heritable and the resulting veins influence the three-dimensional spatial organization of the surrounding differentiating leaf cell types. We identified a provascular/procambial cell-specific gene that encodes a Leu-rich repeat receptor kinase, which we named VASCULAR HIGHWAY1 (VH1). A change in the expression domain and level of VH1 marks the transition from an uncommitted provascular state to a committed procambial state in early vascular development. The coding sequence, expression pattern, and transgenic phenotypes together suggest that VH1 transduces extracellular spatial and temporal signals into downstream cell differentiation responses in provascular/procambial cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Folhas de Planta/enzimologia , Proteínas Quinases/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...