Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 27(10): 1857-1870, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076665

RESUMO

Sequence databases are powerful tools for the contemporary scientists' toolkit. However, most functional annotations in public databases are determined computationally and are not verified by a human expert. While hypotheses generated from computational studies are now amenable to experimentation, the quality of the results relies on the quality of input data. We developed the CaspBase to expedite high-quality dataset compilation of annotated caspase sequences, to maximize phylogenetic signal, and to reduce the noise contributed from public databanks. We describe our methods of curation for the CaspBase and how researchers can acquire sequences from CaspBase.org. Our immediate goal for developing the CaspBase was to optimize the ancestral protein reconstruction (APR) of caspases, and we demonstrate the utility of the CaspBase in APR studies. We also developed the Common Position (CP) system for comparing human caspase family paralogs and suggest the CP system as an update to current reporting methods of caspase amino acid positions. We present a standardized multiple sequence alignment (MSA) for the CP system and show the advantage of using large databases such as the CaspBase in defining structural positions in proteins. Although the results described here pertain to caspase evolution and structure-function studies, the methods can be adapted to any gene family.


Assuntos
Caspases/química , Caspases/genética , Caspases/metabolismo , Biologia Computacional , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Alinhamento de Sequência , Análise de Sequência de Proteína
2.
Protein Sci ; 25(11): 2076-2088, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27577093

RESUMO

The regulation of caspase-3 enzyme activity is a vital process in cell fate decisions leading to cell differentiation and tissue development or to apoptosis. The zebrafish, Danio rerio, has become an increasingly popular animal model to study several human diseases because of their transparent embryos, short reproductive cycles, and ease of drug administration. While apoptosis is an evolutionarily conserved process in metazoans, little is known about caspases from zebrafish, particularly regarding substrate specificity and allosteric regulation compared to the human caspases. We cloned zebrafish caspase-3a (casp3a) and examined substrate specificity of the recombinant protein, Casp3a, compared to human caspase-3 (CASP3) by utilizing M13 bacteriophage substrate libraries that incorporated either random amino acids at P5-P1' or aspartate fixed at P1. The results show a preference for the tetrapeptide sequence DNLD for both enzymes, but the P4 position of zebrafish Casp3a also accommodates valine equally well. We determined the structure of zebrafish Casp3a to 2.28Å resolution by X-ray crystallography, and when combined with molecular dynamics simulations, the results suggest that a limited number of amino acid substitutions near the active site result in plasticity of the S4 sub-site by increasing flexibility of one active site loop and by affecting hydrogen-bonding with substrate. The data show that zebrafish Casp3a exhibits a broader substrate portfolio, suggesting overlap with the functions of caspase-6 in zebrafish development.


Assuntos
Caspase 3/química , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos , Peixe-Zebra , Regulação Alostérica , Animais , Cristalografia por Raios X , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...