Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Neurohospitalist ; 14(3): 347-350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38895002

RESUMO

Introduction: Elsberg syndrome (ES) presents with bowel and bladder dysfunction, resembling cauda equina syndrome, and is classified as a clinicoradiographic syndrome most commonly associated with HSV-2 reactivation. Most cases reveal smooth and continuous nerve enhancement on imaging. Case Description: We present a unique case of ES that presented as several nodular, ring enhancing soft tissue masses along the cauda equina. An 81-year-old woman presented with several weeks of sacral sensory impairment. MRI of the lumbar spine at presentation showed several nodular, ring enhancing soft tissue masses within the thecal sac along the cauda equina, concerning for leptomeningeal carcinomatosis from an unknown primary source. Cerebrospinal fluid (CSF) analysis was notable for lymphocyte predominant pleocytosis and protein elevation, which was nonspecific but suggestive of leptomeningeal carcinomatosis. CSF rapid meningitis panel was positive for HSV2 which was confirmed on HSV2 PCR. The patient was briefly on on acyclovir and was stopped due to lack of meningioencephalitis symptoms. Malignancy workup with cytological analysis and systemic imaging were negative. Given the absence of malignancy and positive HSV2 PCR, the patient was diagnosed with HSV-2 sacral radiculitis and subsequently treated with a full course of intravenous acyclovir with gradual clinical and radiographic improvement. Discussion: Ring-enhancing lesions along the cauda equina are most suggestive of LC. Our case highlights an as of yet unreported presentation of ES which may be valuable for neurologists to be aware of as to avoid any potential diagnostic dilemma, minimize unnecessary and costly testing, and not delay effective treatment.

2.
Sci Adv ; 10(25): eadm9817, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896611

RESUMO

Precision management of fibrotic lung diseases is challenging due to their diverse clinical trajectories and lack of reliable biomarkers for risk stratification and therapeutic monitoring. Here, we validated the accuracy of CMKLR1 as an imaging biomarker of the lung inflammation-fibrosis axis. By analyzing single-cell RNA sequencing datasets, we demonstrated CMKLR1 expression as a transient signature of monocyte-derived macrophages (MDMφ) enriched in patients with idiopathic pulmonary fibrosis (IPF). Consistently, we identified MDMφ as the major driver of the uptake of CMKLR1-targeting peptides in a murine model of bleomycin-induced lung fibrosis. Furthermore, CMKLR1-targeted positron emission tomography in the murine model enabled quantification and spatial mapping of inflamed lung regions infiltrated by CMKLR1-expressing macrophages and emerged as a robust predictor of subsequent lung fibrosis. Last, high CMKLR1 expression by bronchoalveolar lavage cells identified an inflammatory endotype of IPF with poor survival. Our investigation supports the potential of CMKLR1 as an imaging biomarker for endotyping and risk stratification of fibrotic lung diseases.


Assuntos
Fibrose Pulmonar Idiopática , Pneumonia , Animais , Humanos , Camundongos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/diagnóstico por imagem , Pneumonia/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Biomarcadores , Modelos Animais de Doenças , Tomografia por Emissão de Pósitrons/métodos , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Bleomicina , Pulmão/patologia , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BL
3.
Shock ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38713581

RESUMO

ABSTRACT: Post-sepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness (CCI) with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and non-classical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNFα production based on clinical outcome. This may provide therapeutic targets for those at risk for CCI in order to improve their phenotype/endotype, morbidity, and long-term mortality.

4.
Elife ; 132024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819426

RESUMO

During perception, decoding the orientation of gratings depends on complex interactions between the orientation of the grating, aperture edges, and topographic structure of the visual map. Here, we aimed to test how aperture biases described during perception affect working memory (WM) decoding. For memoranda, we used gratings multiplied by radial and angular modulators to generate orthogonal aperture biases for identical orientations. Therefore, if WM representations are simply maintained sensory representations, they would have similar aperture biases. If they are abstractions of sensory features, they would be unbiased and the modulator would have no effect on orientation decoding. Neural patterns of delay period activity while maintaining the orientation of gratings with one modulator (e.g. radial) were interchangeable with patterns while maintaining gratings with the other modulator (e.g. angular) in visual and parietal cortex, suggesting that WM representations are insensitive to aperture biases during perception. Then, we visualized memory abstractions of stimuli using models of visual field map properties. Regardless of aperture biases, WM representations of both modulated gratings were recoded into a single oriented line. These results provide strong evidence that visual WM representations are abstractions of percepts, immune to perceptual aperture biases, and compel revisions of WM theory.


Assuntos
Memória de Curto Prazo , Percepção Visual , Memória de Curto Prazo/fisiologia , Percepção Visual/fisiologia , Animais , Masculino , Humanos , Córtex Visual/fisiologia , Estimulação Luminosa , Macaca mulatta
5.
J Neurosci ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769009

RESUMO

While the exertion of mental effort improves performance on cognitive tasks, the neural mechanisms by which motivational factors impact cognition remain unknown. Here, we used fMRI to test how changes in cognitive effort, induced by changes in task difficulty, impacts neural representations of working memory. Participants (both sexes) were precued whether working memory difficulty would be hard or easy. We hypothesized that hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard compared to easy trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity during delay periods in prefrontal cortex, especially during hard trials. Yet, details of the memoranda could not be decoded from patterns in prefrontal activity. In the patterns of activity in visual cortex, however, we found strong decoding of memorized targets, where accuracy was higher on hard trials. To potentially link these across-region effects, we hypothesized that effort, carried by persistent activity in prefrontal cortex, impacts the quality of working memory representations encoded in visual cortex. Indeed, we found that the amplitude of delay period activity in frontal cortex predicted decoded accuracy in visual cortex on a trial-wise basis. These results indicate that effort-related feedback signals sculpt population activity in visual cortex, improving mnemonic fidelity.Significance Statement A full understanding of the neural mechanisms underlying our cognitive abilities depends on understanding their interplay with factors such as cognitive effort. Here, we relied on the simple intuition that some tasks require more effort than others and success depends on how hard we try. We show how the exertion of cognitive effort - trying harder - improves the quality of working memory representations in visual cortex mediated by feedback from prefrontal cortex. Such a mechanism describes how the limited resources that support working memory are allocated and strategically controlled. These results have implications for psychiatric disorders, like schizophrenia, where motivational deficits may masquerade as cognitive dysfunction.

6.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766258

RESUMO

To mitigate capacity limits of working memory, people allocate resources according to an item's relevance. However, the neural mechanisms supporting such a critical operation remain unknown. Here, we developed computational neuroimaging methods to decode and demix neural responses associated with multiple items in working memory with different priorities. In striate and extrastriate cortex, the gain of neural responses tracked the priority of memoranda. Higher-priority memoranda were decoded with smaller error and lower uncertainty. Moreover, these neural differences predicted behavioral differences in memory prioritization. Remarkably, trialwise variability in the magnitude of delay activity in frontal cortex predicted differences in decoded precision between low and high-priority items in visual cortex. These results suggest a model in which feedback signals broadcast from frontal cortex sculpt the gain of memory representations in visual cortex according to behavioral relevance, thus, identifying a neural mechanism for resource allocation.

7.
Front Immunol ; 15: 1355405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720891

RESUMO

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Assuntos
Células Supressoras Mieloides , Sepse , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Humanos , Sepse/imunologia , Transcriptoma , Masculino , Feminino , Diferenciação Celular/imunologia , Perfilação da Expressão Gênica
8.
PLoS Comput Biol ; 20(4): e1012060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683857

RESUMO

Some aspects of cognition are more taxing than others. Accordingly, many people will avoid cognitively demanding tasks in favor of simpler alternatives. Which components of these tasks are costly, and how much, remains unknown. Here, we use a novel task design in which subjects request wages for completing cognitive tasks and a computational modeling procedure that decomposes their wages into the costs driving them. Using working memory as a test case, our approach revealed that gating new information into memory and protecting against interference are costly. Critically, other factors, like memory load, appeared less costly. Other key factors which may drive effort costs, such as error avoidance, had minimal influence on wage requests. Our approach is sensitive to individual differences, and could be used in psychiatric populations to understand the true underlying nature of apparent cognitive deficits.


Assuntos
Cognição , Memória de Curto Prazo , Humanos , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Masculino , Feminino , Adulto , Biologia Computacional , Adulto Jovem , Simulação por Computador , Análise e Desempenho de Tarefas
9.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659957

RESUMO

Perception, working memory, and long-term memory each evoke neural responses in visual cortex, suggesting that memory uses encoding mechanisms shared with perception. While previous research has largely focused on how perception and memory are similar, we hypothesized that responses in visual cortex would differ depending on the origins of the inputs. Using fMRI, we quantified spatial tuning in visual cortex while participants (both sexes) viewed, maintained in working memory, or retrieved from long-term memory a peripheral target. In each of these conditions, BOLD responses were spatially tuned and were aligned with the target's polar angle in all measured visual field maps including V1. As expected given the increasing sizes of receptive fields, polar angle tuning during perception increased in width systematically up the visual hierarchy from V1 to V2, V3, hV4, and beyond. In stark contrast, the widths of tuned responses were broad across the visual hierarchy during working memory and long-term memory, matched to the widths in perception in later visual field maps but much broader in V1. This pattern is consistent with the idea that mnemonic responses in V1 stem from top-down sources. Moreover, these tuned responses when biased (clockwise or counterclockwise of target) predicted matched biases in memory, suggesting that the readout of maintained and reinstated mnemonic responses influences memory guided behavior. We conclude that feedback constrains spatial tuning during memory, where earlier visual maps inherit broader tuning from later maps thereby impacting the precision of memory.

10.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496682

RESUMO

Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in both normal and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ~3500 proteins at a spatial resolution of 50 µm and the largest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provide robust protein quantifications in terms of identifying differentially abundant proteins and spatially co-variable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables to identify protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial co-expression analysis.

11.
Islets ; 16(1): 2334044, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38533763

RESUMO

Pancreatic beta cells are among the slowest replicating cells in the human body and have not been observed to increase in number except during the fetal and neonatal period, in cases of obesity, during puberty, as well as during pregnancy. Pregnancy is associated with increased beta cell mass to meet heightened insulin demands. This phenomenon raises the intriguing possibility that factors present in the serum of pregnant individuals may stimulate beta cell proliferation and offer insights into expansion of the beta cell mass for treatment and prevention of diabetes. The primary objective of this study was to test the hypothesis that serum from pregnant donors contains bioactive factors capable of inducing human beta cell proliferation. An immortalized human beta cell line with protracted replication (EndoC-ßH1) was cultured in media supplemented with serum from pregnant and non-pregnant female and male donors and assessed for differences in proliferation. This experiment was followed by assessment of proliferation of primary human beta cells. Sera from five out of six pregnant donors induced a significant increase in the proliferation rate of EndoC-ßH1 cells. Pooled serum from the cohort of pregnant donors also increased the rate of proliferation in primary human beta cells. This study demonstrates that serum from pregnant donors stimulates human beta cell proliferation. These findings suggest the existence of pregnancy-associated factors that can offer novel avenues for beta cell regeneration and diabetes prevention strategies. Further research is warranted to elucidate the specific factors responsible for this effect.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Recém-Nascido , Humanos , Masculino , Feminino , Gravidez , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Linhagem Celular , Diabetes Mellitus/metabolismo , Proliferação de Células
12.
Circ Genom Precis Med ; 17(2): e004377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362799

RESUMO

BACKGROUND: Pathogenic autosomal-dominant missense variants in MYH7 (myosin heavy chain 7), which encodes the sarcomeric protein (ß-MHC [beta myosin heavy chain]) expressed in cardiac and skeletal myocytes, are a leading cause of hypertrophic cardiomyopathy and are clinically actionable. However, ≈75% of MYH7 missense variants are of unknown significance. While human-induced pluripotent stem cells (hiPSCs) can be differentiated into cardiomyocytes to enable the interrogation of MYH7 variant effect in a disease-relevant context, deep mutational scanning has not been executed using diploid hiPSC derivates due to low hiPSC gene-editing efficiency. Moreover, multiplexable phenotypes enabling deep mutational scanning of MYH7 variant hiPSC-derived cardiomyocytes are unknown. METHODS: To overcome these obstacles, we used CRISPRa On-Target Editing Retrieval enrichment to generate an hiPSC library containing 113 MYH7 codon variants suitable for deep mutational scanning. We first established that ß-MHC protein loss occurs in a hypertrophic cardiomyopathy human heart with a pathogenic MYH7 variant. We then differentiated the MYH7 missense variant hiPSC library to cardiomyocytes for multiplexed assessment of ß-MHC variant abundance by massively parallel sequencing and hiPSC-derived cardiomyocyte survival. RESULTS: Both the multiplexed assessment of ß-MHC abundance and hiPSC-derived cardiomyocyte survival accurately segregated all known pathogenic variants from synonymous variants. Functional data were generated for 4 variants of unknown significance and 58 additional MYH7 missense variants not yet detected in patients. CONCLUSIONS: This study leveraged hiPSC differentiation into disease-relevant cardiomyocytes to enable multiplexed assessments of MYH7 missense variants for the first time. Phenotyping strategies used here enable the application of deep mutational scanning to clinically actionable genes, which should reduce the burden of variants of unknown significance on patients and clinicians.


Assuntos
Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Diferenciação Celular/genética , Miosinas Cardíacas/genética
13.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076859

RESUMO

Pioneering studies demonstrating that the contents of visual working memory (WM) can be decoded from the patterns of multivoxel activity in early visual cortex transformed not only how we study WM, but theories of how memories are stored. For instance, the ability to decode the orientation of memorized gratings is hypothesized to depend on the recruitment of the same neural encoding machinery used for perceiving orientations. However, decoding evidence cannot be used to test the so-called sensory recruitment hypothesis without understanding the underlying nature of what is being decoded. Although unknown during WM, during perception decoding the orientation of gratings does not simply depend on activities of orientation tuned neurons. Rather, it depends on complex interactions between the orientation of the grating, the aperture edges, and the topographic structure of the visual map. Here, our goals are to 1) test how these aperture biases described during perception may affect WM decoding, and 2) leverage carefully manipulated visual stimulus properties of gratings to test how sensory-like are WM codes. For memoranda, we used gratings multiplied by radial and angular modulators to generate orthogonal aperture biases despite having identical orientations. Therefore, if WM representations are simply maintained sensory representations, they would have similar aperture biases. If they are abstractions of sensory features, they would be unbiased and the modulator would have no effect on orientation decoding. Results indicated that fMRI patterns of delay period activity while maintaining the orientation of a grating with one modulator (eg, radial) were interchangeable with patterns while maintaining a grating with the other modulator (eg, angular). We found significant cross-classification in visual and parietal cortex, suggesting that WM representations are insensitive to aperture biases during perception. Then, we visualized memory abstractions of stimuli using a population receptive field model of the visual field maps. Regardless of aperture biases, WM representations of both modulated gratings were recoded into a single oriented line. These results provide strong evidence that visual WM representations are abstractions of percepts, immune to perceptual aperture biases, and compel revisions of WM theory.

14.
J Immunol ; 212(2): 258-270, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38079221

RESUMO

Oxidants participate in lymphocyte activation and function. We previously demonstrated that eliminating the activity of NADPH oxidase 2 (NOX2) significantly impaired the effectiveness of autoreactive CD8+ CTLs. However, the molecular mechanisms impacting CD8+ T cell function remain unknown. In the present study, we examined the role of NOX2 in both NOD mouse and human CD8+ T cell function. Genetic ablation or chemical inhibition of NOX2 in CD8+ T cells significantly suppressed activation-induced expression of the transcription factor T-bet, the master transcription factor of the Tc1 cell lineage, and T-bet target effector genes such as IFN-γ and granzyme B. Inhibition of NOX2 in both human and mouse CD8+ T cells prevented target cell lysis. We identified that superoxide generated by NOX2 must be converted into hydrogen peroxide to transduce the redox signal in CD8+ T cells. Furthermore, we show that NOX2-generated oxidants deactivate the tumor suppressor complex leading to activation of RheB and subsequently mTOR complex 1. These results indicate that NOX2 plays a nonredundant role in TCR-mediated CD8+ T cell effector function.


Assuntos
Linfócitos T CD8-Positivos , NADPH Oxidase 2 , Espécies Reativas de Oxigênio , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Granzimas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/imunologia , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos Endogâmicos NOD , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Masculino , Feminino , Adulto Jovem
15.
Dev Cell ; 59(1): 91-107.e6, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38091997

RESUMO

Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peixe-Zebra/metabolismo , Diferenciação Celular/genética , Proliferação de Células
16.
Diabetes Care ; 47(2): 285-289, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117469

RESUMO

OBJECTIVE: Low-dose antithymocyte globulin (ATG) (2.5 mg/kg) preserves C-peptide and reduces HbA1c in new-onset stage 3 type 1 diabetes, yet efficacy in delaying progression from stage 2 to stage 3 has not been evaluated. RESEARCH DESIGN AND METHODS: Children (n = 6) aged 5-14 years with stage 2 type 1 diabetes received off-label, low-dose ATG. HbA1c, C-peptide, continuous glucose monitoring, insulin requirements, and side effects were followed for 18-48 months. RESULTS: Three subjects (50%) remained diabetes free after 1.5, 3, and 4 years of follow-up, while three developed stage 3 within 1-2 months after therapy. Eighteen months posttreatment, even disease progressors demonstrated near-normal HbA1c (5.1% [32 mmol/mol], 5.6% [38 mmol/mol], and 5.3% [34 mmol/mol]), time in range (93%, 88%, and 98%), low insulin requirements (0.17, 0.18, and 0.34 units/kg/day), and robust C-peptide 90 min after mixed meal (1.3 ng/dL, 2.3 ng/dL, and 1.4 ng/dL). CONCLUSIONS: These observations support additional prospective studies evaluating ATG in stage 2 type 1 diabetes.


Assuntos
Soro Antilinfocitário , Diabetes Mellitus Tipo 1 , Criança , Humanos , Soro Antilinfocitário/uso terapêutico , Glicemia , Automonitorização da Glicemia , Peptídeo C , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/induzido quimicamente , Hemoglobinas Glicadas , Hipoglicemiantes , Insulina , Estudos Prospectivos
17.
Am J Ophthalmol Case Rep ; 32: 101911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077784

RESUMO

Purpose: The impact of SARS-CoV-2 infection on pre-existing retinal pathology is currently unknown. Observations: We present a unique case of rapidly progressing diabetic retinopathy (DR) following severe COVID-19 infection requiring supplemental oxygen and subsequent long-COVID. Conclusions and importance: Following infection with SARS-CoV-2, the associated acute and possible long-term hypoxia has the potential to affect the retina and accelerate the natural course of diabetic retinopathy.

18.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106094

RESUMO

The neural mechanisms by which motivational factors influence cognition remain unknown. Using fMRI, we tested how cognitive effort impacts working memory (WM). Participants were precued whether WM difficulty would be hard or easy. Hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity in prefrontal cortex, especially during hard trials. We found strong decoding of location in visual cortex, where accuracy was higher on hard trials. Connecting these across-region effects, we found that the amplitude of delay period activity in frontal cortex predicted decoded accuracy in visual cortex on a trial-wise basis. We conclude that the gain of persistent activity in frontal cortex may be the source of effort-related feedback signals that improve the quality of WM representations stored in visual cortex.

19.
Proc Natl Acad Sci U S A ; 120(49): e2312039120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015847

RESUMO

In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vß3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vß3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vß3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vß repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Humanos , Animais , Linfócitos T CD8-Positivos , Camundongos Endogâmicos NOD , Vírus do Tumor Mamário do Camundongo , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD4-Positivos , Camundongos Transgênicos
20.
Curr Biol ; 33(17): 3775-3784.e4, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37595590

RESUMO

The activity of neurons in macaque prefrontal cortex (PFC) persists during working memory (WM) delays, providing a mechanism for memory.1,2,3,4,5,6,7,8,9,10,11 Although theory,11,12 including formal network models,13,14 assumes that WM codes are stable over time, PFC neurons exhibit dynamics inconsistent with these assumptions.15,16,17,18,19 Recently, multivariate reanalyses revealed the coexistence of both stable and dynamic WM codes in macaque PFC.20,21,22,23 Human EEG studies also suggest that WM might contain dynamics.24,25 Nonetheless, how WM dynamics vary across the cortical hierarchy and which factors drive dynamics remain unknown. To elucidate WM dynamics in humans, we decoded WM content from fMRI responses across multiple cortical visual field maps.26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 We found coexisting stable and dynamic neural representations of WM during a memory-guided saccade task. Geometric analyses of neural subspaces revealed that early visual cortex exhibited stronger dynamics than high-level visual and frontoparietal cortex. Leveraging models of population receptive fields, we visualized and made the neural dynamics interpretable. We found that during WM delays, V1 population initially encoded a narrowly tuned bump of activation centered on the peripheral memory target. Remarkably, this bump then spread inward toward foveal locations, forming a vector along the trajectory of the forthcoming memory-guided saccade. In other words, the neural code transformed into an abstraction of the stimulus more proximal to memory-guided behavior. Therefore, theories of WM must consider both sensory features and their task-relevant abstractions because changes in the format of memoranda naturally drive neural dynamics.


Assuntos
Memória de Curto Prazo , Neurônios , Humanos , Animais , Córtex Pré-Frontal , Macaca , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...