Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37318869

RESUMO

Myotonic dystrophy type 1 (DM1), the most common form of adult-onset muscular dystrophy, is caused by a CTG expansion resulting in significant transcriptomic dysregulation that leads to muscle weakness and wasting. While strength training is clinically beneficial in DM1, molecular effects had not been studied. To determine whether training rescued transcriptomic defects, RNA-Seq was performed on vastus lateralis samples from 9 male patients with DM1 before and after a 12-week strength-training program and 6 male controls who did not undergo training. Differential gene expression and alternative splicing analysis were correlated with the one-repetition maximum strength evaluation method (leg extension, leg press, hip abduction, and squat). While training program-induced improvements in splicing were similar among most individuals, rescued splicing events varied considerably between individuals. Gene expression improvements were highly varied between individuals, and the percentage of differentially expressed genes rescued after training were strongly correlated with strength improvements. Evaluating transcriptome changes individually revealed responses to the training not evident from grouped analysis, likely due to disease heterogeneity and individual exercise response differences. Our analyses indicate that transcriptomic changes are associated with clinical outcomes in patients with DM1 undergoing training and that these changes are often specific to the individual and should be analyzed accordingly.


Assuntos
Distrofias Musculares , Distrofia Miotônica , Treinamento Resistido , Adulto , Humanos , Masculino , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Músculo Esquelético/metabolismo , Transcriptoma , Distrofias Musculares/metabolismo
2.
iScience ; 25(5): 104198, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35479399

RESUMO

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are common forms of adult onset muscular dystrophy. Pathogenesis in both diseases is largely driven by production of toxic-expanded repeat RNAs that sequester MBNL RNA-binding proteins, causing mis-splicing. Given this shared pathogenesis, we hypothesized that diamidines, small molecules that rescue mis-splicing in DM1 models, could also rescue mis-splicing in DM2 models. While several DM1 cell models exist, few are available for DM2 limiting research and therapeutic development. Here, we characterize DM1 and DM2 patient-derived fibroblasts for use in small molecule screens and therapeutic studies. We identify mis-splicing events unique to DM2 fibroblasts and common events shared with DM1 fibroblasts. We show that diamidines can partially rescue molecular phenotypes in both DM1 and DM2 fibroblasts. This study demonstrates the potential of fibroblasts as models for DM1 and DM2, which will help meet an important need for well-characterized DM2 cell models.

3.
Trends Pharmacol Sci ; 41(2): 71-73, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31926601

RESUMO

Repeat-associated non-ATG (RAN) translation is emerging as a driver of pathogenesis in microsatellite expansion disorders. Green and colleagues recently identified several candidate RAN translation inhibitors from a high-throughput small-molecule screen for fragile X tremor ataxia syndrome. Their study establishes a path forward for identifying inhibitors of RAN translation for multiple disorders.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Humanos , Tremor/tratamento farmacológico , Tremor/genética , Expansão das Repetições de Trinucleotídeos
4.
Annu Rev Neurosci ; 42: 227-247, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30909783

RESUMO

Microsatellite mutations involving the expansion of tri-, tetra-, penta-, or hexanucleotide repeats cause more than 40 different neurological disorders. Although, traditionally, the position of the repeat within or outside of an open reading frame has been used to focus research on disease mechanisms involving protein loss of function, protein gain of function, or RNA gain of function, the discoveries of bidirectional transcription and repeat-associated non-ATG (RAN) have blurred these distinctions. Here we review what is known about RAN proteins in disease, the mechanisms by which they are produced, and the novel therapeutic opportunities they provide.


Assuntos
Expansão das Repetições de DNA/genética , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Biossíntese de Proteínas , Códon de Iniciação/genética , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/fisiologia , Mutação com Ganho de Função , Código Genético , Humanos , Mutação com Perda de Função , Repetições de Microssatélites/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Transcrição Gênica
5.
J Biol Chem ; 293(42): 16127-16141, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30213863

RESUMO

Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.


Assuntos
Expansão das Repetições de DNA , Repetições de Microssatélites , Doenças do Sistema Nervoso/genética , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Dipeptídeos , Demência Frontotemporal/genética , Expressão Gênica , Doença de Huntington/genética , Mutação , Distrofia Miotônica/genética
6.
Curr Opin Genet Dev ; 44: 125-134, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28365506

RESUMO

Since the discovery of repeat-associated non-ATG (RAN) translation, and more recently its association with amyotrophic lateral sclerosis/frontotemporal dementia, there has been an intense focus to understand how this process works and the downstream effects of these novel proteins. RAN translation across several different types of repeat expansions mutations (CAG, CTG, CCG, GGGGCC, GGCCCC) results in the production of proteins in all three reading frames without an ATG initiation codon. The combination of bidirectional transcription and RAN translation has been shown to result in the accumulation of up to six mutant expansion proteins in a growing number of diseases. This process is complex mechanistically and also complex from the perspective of the downstream consequences in disease. Here we review recent developments in RAN translation and their implications on our basic understanding of neurodegenerative disease and gene expression.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Proteínas Mutantes/genética , Biossíntese de Proteínas , Esclerose Lateral Amiotrófica/fisiopatologia , Proteína C9orf72/genética , Códon de Iniciação/genética , Demência Frontotemporal/fisiopatologia , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Fases de Leitura Aberta/genética
7.
Curr Opin Genet Dev ; 26: 6-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24852074

RESUMO

Microsatellite-expansion diseases are a class of neurological and neuromuscular disorders caused by the expansion of short stretches of repetitive DNA (e.g. GGGGCC, CAG, CTG …) within the human genome. Since their discovery 20 years ago, research into how microsatellites expansions cause disease has been examined using the model that these genes are expressed in one direction and that expansion mutations only encode proteins when located in an ATG-initiated open reading frame. The fact that these mutations are often bidirectionally transcribed combined with the recent discovery of repeat associated non-ATG (RAN) translation provides new perspectives on how these expansion mutations are expressed and impact disease. Two expansion transcripts and a set of unexpected RAN proteins must now be considered for both coding and 'non-coding' expansion disorders. RAN proteins have been reported in a growing number of diseases, including spinocerebellar ataxia type 8 (SCA8), myotonic dystrophy type 1 (DM1), Fragile-X tremor ataxia syndrome (FXTAS), and C9ORF72 amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD).


Assuntos
Códon de Iniciação/genética , Expansão das Repetições de DNA/genética , Mutação , Biossíntese de Proteínas , Sequência de Bases , Humanos , Modelos Genéticos , Proteínas Mutantes/genética , Distrofia Miotônica/genética , Degenerações Espinocerebelares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...