Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(1): 1-13, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34971562

RESUMO

Research in low Earth orbit (LEO) has become more accessible. The 2020 Biomanufacturing in Space Symposium reviewed space-based regenerative medicine research and discussed leveraging LEO to advance biomanufacturing for regenerative medicine applications. The symposium identified areas where financial investments could stimulate advancements overcoming technical barriers. Opportunities in disease modeling, stem-cell-derived products, and biofabrication were highlighted. The symposium will initiate a roadmap to a sustainable market for regenerative medicine biomanufacturing in space. This perspective summarizes the 2020 Biomanufacturing in Space Symposium, highlights key biomanufacturing opportunities in LEO, and lays the framework for a roadmap to regenerative medicine biomanufacturing in space.


Assuntos
Materiais Biocompatíveis , Meio Ambiente Extraterreno , Manufaturas , Medicina Regenerativa , Inteligência Artificial , Automação , Bioengenharia , Humanos , Aprendizado de Máquina , Pesquisa
2.
NPJ Microgravity ; 6: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047838

RESUMO

While it has been shown that astronauts suffer immune disorders after spaceflight, the underlying causes are still poorly understood and there are many variables to consider when investigating the immune system in a complex environment. Additionally, there is growing evidence that suggests that not only is the immune system being altered, but the pathogens that infect the host are significantly influenced by spaceflight and ground-based spaceflight conditions. In this study, we demonstrate that Serratia marcescens (strain Db11) was significantly more lethal to Drosophila melanogaster after growth on the International Space Station than ground-based controls, but the increased virulence phenotype of S. marcescens did not persist after the bacterial cultures were passaged on the ground. Increased virulence was also observed in bacteria that were grown in simulated microgravity conditions on the ground using the rotating wall vessel. Increased virulence of the space-flown bacteria was similar in magnitude between wild-type flies and those that were mutants for the well-characterized immune pathways Imd and Toll, suggesting that changes to the host immune system after infection are likely not a major factor contributing towards increased susceptibility of ground-reared flies infected with space-flown bacteria. Characterization of the bacteria shows that at later timepoints spaceflight bacteria grew at a greater rate than ground controls in vitro, and in the host. These results suggest complex physiological changes occurring in pathogenic bacteria in space environments, and there may be novel mechanisms mediating these physiological effects that need to be characterized.

3.
Front Mol Neurosci ; 12: 320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009898

RESUMO

Hair cells sense and transmit auditory, vestibular, and hydrodynamic information by converting mechanical stimuli into electrical signals. This process of mechano-electrical transduction (MET) requires a mechanically gated channel localized in the apical stereocilia of hair cells. In mice, lipoma HMGIC fusion partner-like 5 (LHFPL5) acts as an auxiliary subunit of the MET channel whose primary role is to correctly localize PCDH15 and TMC1 to the mechanotransduction complex. Zebrafish have two lhfpl5 genes (lhfpl5a and lhfpl5b), but their individual contributions to MET channel assembly and function have not been analyzed. Here we show that the zebrafish lhfpl5 genes are expressed in discrete populations of hair cells: lhfpl5a expression is restricted to auditory and vestibular hair cells in the inner ear, while lhfpl5b expression is specific to hair cells of the lateral line organ. Consequently, lhfpl5a mutants exhibit defects in auditory and vestibular function, while disruption of lhfpl5b affects hair cells only in the lateral line neuromasts. In contrast to previous reports in mice, localization of Tmc1 does not depend upon Lhfpl5 function in either the inner ear or lateral line organ. In both lhfpl5a and lhfpl5b mutants, GFP-tagged Tmc1 and Tmc2b proteins still localize to the stereocilia of hair cells. Using a stably integrated GFP-Lhfpl5a transgene, we show that the tip link cadherins Pcdh15a and Cdh23, along with the Myo7aa motor protein, are required for correct Lhfpl5a localization at the tips of stereocilia. Our work corroborates the evolutionarily conserved co-dependence between Lhfpl5 and Pcdh15, but also reveals novel requirements for Cdh23 and Myo7aa to correctly localize Lhfpl5a. In addition, our data suggest that targeting of Tmc1 and Tmc2b proteins to stereocilia in zebrafish hair cells occurs independently of Lhfpl5 proteins.

4.
Elife ; 62017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534737

RESUMO

Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle.


Assuntos
Células Ciliadas Auditivas/fisiologia , Perda Auditiva Neurossensorial/genética , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Metiltransferases , Proteínas de Peixe-Zebra/metabolismo , Animais , Modelos Animais de Doenças , Mutação , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...