Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 10915-10931, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38845098

RESUMO

Phytochelatins (PCs) are poly-Cys peptides containing a repeating γ-Glu-Cys motif synthesized in plants, algae, certain fungi, and worms by PC synthase from reduced glutathione. It has been shown that an excess of toxic metal ions induces their biosynthesis and that they are responsible for the detoxification process. Little is known about their participation in essential metal binding under nontoxic, basal conditions under which PC synthase is active. This study presents spectroscopic and thermodynamic interactions with the PC2-PC5 series, mainly focusing on the relations between Zn(II) complex stability and cellular Zn(II) availability. The investigations employed mass spectrometry, UV-vis spectroscopy, potentiometry, competition assays with zinc probes, and isothermal titration calorimetry (ITC). All peptides form ZnL complexes, while ZnL2 was found only for PC2, containing two to four sulfur donors in the coordination sphere. Binuclear species typical of Cd(II)-PC complexes are not formed in the case of Zn(II). Results demonstrate that the affinity for Zn(II) increases linearly from PC2 to PC4, ranging from micro- to low-picomolar. Further elongation does not significantly increase the stability. Stability elevation is driven mainly by entropic factors related to the chelate effect and conformational restriction rather than enthalpic factors related to the increasing number of sulfur donors. The affinity of the investigated PCs falls within the range of exchangeable Zn(II) concentrations (hundreds of pM) observed in plants, supporting for the first time a role of PCs both in buffering and in muffling cytosolic Zn(II) concentrations under normal conditions, not exposed to zinc excess, where short PCs have been identified in numerous studies. Furthermore, we found that Cd(II)-PC complexes demonstrate significantly higher metal capacities due to the formation of polynuclear species, which are lacking for Zn(II), supporting the role of PCs in Cd(II) storage (detoxification) and Zn(II) buffering and muffling. Our results on phytochelatins' coordination chemistry and thermodynamics are important for zinc biology and understanding the molecular basis of cadmium toxicity, leaving room for future studies.


Assuntos
Fitoquelatinas , Termodinâmica , Zinco , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Zinco/química , Zinco/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/síntese química
3.
J Hazard Mater ; 469: 134084, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518700

RESUMO

Research on airborne ultrafine particles (UFP) is driven by an increasing awareness of their potential effects on human health and on ecosystems. Brake wear is an important UFP source releasing largely metallic and potentially hazardous emissions. UFP uptake into plant tissues could mediate entry into food webs. Still, the effects of these particles on plants have barely been studied, especially in a realistic setting with aerial exposure. In this study, we established a system designed to mimic airborne exposure to ultrafine brake dust particles and performed experiments with the model species Arabidopsis thaliana. Using advanced analytical methods, we characterized the conditions in our exposure experiments. A comparison with data we obtained on UFP release at different outdoor stations showed that our controlled exposures are within the same order of magnitude regarding UFP deposition on plants at a traffic-heavy site. In order to assess the physiological implications of exposure to brake derived-particles we generated transcriptomic data with RNA sequencing. The UFP treatment led to diverse changes in gene expression, including the deregulation of genes involved in Fe and Cu homeostasis. This suggests a major contribution of metallic UFPs to the elicitation of physiological responses by brake wear derived emissions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental/métodos , Poeira , Tamanho da Partícula , Emissões de Veículos/toxicidade , Emissões de Veículos/análise
4.
Environ Sci Technol ; 57(51): 21846-21854, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38093687

RESUMO

Inorganic and methylated thioarsenates have recently been reported to form in paddy soil pore waters and accumulate in rice grains. Among them, dimethylmonothioarsenate (DMMTA) is particularly relevant because of its high cytotoxicity and potential misidentification as nonregulated dimethylarsenate (DMA). Studying DMMTA uptake and flag leaf, grain, and husk accumulation in rice plants during grain filling, substantial dethiolation to DMA was observed with only 8.0 ± 0.1, 9.1 ± 0.6, and 1.4 ± 0.2% DMMTA remaining, respectively. More surprisingly, similar shares of DMMTA were observed in control experiments with DMA, indicating in planta DMA thiolation. Exposure of different rice seedling varieties to not only DMA but also to arsenite and monomethylarsenate (MMA) revealed in planta thiolation as a common process in rice. Up to 35 ± 7% DMA thiolation was further observed in the shoots and roots of the model plant Arabidopsis thaliana. Parameters determining the ratio and kinetics of thiolation versus dethiolation are unknown, yet, but less DMA thiolation in glutathione-deficient mutants compared to wild-type plants suggested glutathione concentration as one potential parameter. Our results demonstrate that pore water is not the only source for thioarsenates in rice grains and that especially the currently nonregulated DMA needs to be monitored as a potential precursor of DMMTA formation inside rice plants.


Assuntos
Arabidopsis , Arsênio , Oryza , Poluentes do Solo , Ácido Cacodílico , Glutationa
5.
Mol Plant ; 16(12): 1885-1886, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37876160
6.
Metallomics ; 15(7)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422438

RESUMO

Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.


Assuntos
Chlamydomonas , Cisteína , Cisteína/metabolismo , Chlamydomonas/metabolismo , Zinco/metabolismo , Cobre/metabolismo , Homeostase
7.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993560

RESUMO

Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ~80-fold, corresponding to ~ 2.8 × 10 9 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.

8.
J Hazard Mater ; 444(Pt A): 130391, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410245

RESUMO

Recent results revealed that considerable Pb accumulation in plants is possible under specific soil conditions that make Pb phytoavailable. In this review, the sources and transformations of Pb in soils, the interaction of Pb with bacteria and specifically the microbiota in the soil, factors and mechanisms of Pb uptake, translocation and accumulation in plants and Pb toxicity in living organisms are comprehensively elaborated. Specific adsorption and post-adsorption transformations of Pb in soil are the main mechanisms affecting the mobility, bioavailability, and toxicity of Pb. The adsorption ability of Pb largely depends on the composition and properties of soils and environmental conditions. Microbial impact on Pb mobility in soil and bioavailability as well as bacterial resistance to Pb are considered. Specific mechanisms conferring Pb-resistance, including Pb-efflux, siderophores, and EPS, have been identified. Pathways of Pb entry into plants as well as mechanisms of in planta Pb transport are poorly understood. Available evidence suggests the involvement of Ca transporters, organic acids and the phytochelatin pathway in Pb transport, mobility and detoxification, respectively.


Assuntos
Microbiota , Solo , Chumbo/toxicidade , Disponibilidade Biológica , Adsorção
9.
J Agric Food Chem ; 70(31): 9610-9618, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35901520

RESUMO

Arsenic (As) occurrence in rice is a serious human health threat. Worldwide, regulations typically limit only carcinogenic inorganic As, but not possibly carcinogenic dimethylated oxyarsenate (DMA). However, there is emerging evidence that "DMA", determined by routine acid-based extraction and analysis, hides a substantial share of dimethylated thioarsenates that have similar or higher cytotoxicities than arsenite. Risk assessments characterizing the in vivo toxicity of rice-derived dimethylated thioarsenates are urgently needed. In the meantime, either more sophisticated methods based on enzymatic extraction and separation of dimethylated oxy- and thioarsenates have to become mandatory or total As should be regulated.


Assuntos
Arsênio , Arsenicais , Oryza , Arsênio/toxicidade , Ácido Cacodílico/toxicidade , Carcinógenos/toxicidade , Humanos
10.
Environ Sci Technol ; 56(14): 10072-10083, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35759640

RESUMO

Arsenic is one of the most relevant environmental pollutants and human health threats. Several arsenic species occur in soil pore waters. Recently, it was discovered that these include inorganic and organic thioarsenates. Among the latter, dimethylmonothioarsenate (DMMTA) is of particular concern because in mammalian cells, its toxicity was found to exceed even that of arsenite. We investigated DMMTA toxicity for plants in experiments with Arabidopsis thaliana and indeed observed stronger growth inhibition than with arsenite. DMMTA caused a specific, localized deformation of root epidermal cells. Toxicity mechanisms apparently differ from those of arsenite since no accumulation of reactive oxygen species was observed in DMMTA-exposed root tips. Also, there was no contribution of the phytochelatin pathway to the DMMTA detoxification as indicated by exposure experiments with respective mutants and thiol profiling. RNA-seq analysis found strong transcriptome changes dominated by stress-responsive genes. DMMTA was taken up more efficiently than the methylated oxyarsenate dimethylarsenate and highly mobile within plants as revealed by speciation analysis. Shoots showed clear indications of DMMTA toxicity such as anthocyanin accumulation and a decrease in chlorophyll and carotenoid levels. The toxicity and efficient translocation of DMMTA within plants raise important food safety issues.


Assuntos
Arabidopsis , Arsênio , Arsenitos , Arabidopsis/genética , Arabidopsis/metabolismo , Arsênio/metabolismo , Arsênio/toxicidade , Ácido Cacodílico , Humanos , Fitoquelatinas , Plantas/metabolismo
11.
J Exp Bot ; 73(6): 1789-1799, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134869

RESUMO

The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.


Assuntos
Micronutrientes , Oligoelementos , Agricultura/métodos , Produtos Agrícolas/metabolismo , Alimentos Fortificados , Homeostase , Humanos , Micronutrientes/metabolismo
12.
J Exp Bot ; 73(6): 1688-1698, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34727160

RESUMO

Nearly 10% of all plant proteins belong to the zinc (Zn) proteome. They require Zn either for catalysis or as a structural element. Most of the protein-bound Zn in eukaryotic cells is found in the cytosol. The fundamental differences between transition metal cations in the stability of their complexes with organic ligands, as described by the Irving-Williams series, necessitate buffering of cytosolic Zn (the 'free Zn' pool) in the picomolar range (i.e. ~6 orders of magnitude lower than the total cellular concentration). Various metabolites and peptides, including nicotianamine, glutathione, and phytochelatins, serve as Zn buffers. They are hypothesized to supply Zn to enzymes, transporters, or the recently identified sensor proteins. Zn2+ acquisition is mediated by ZRT/IRT-like proteins. Metal tolerance proteins transport Zn2+ into vacuoles and the endoplasmic reticulum, the major Zn storage sites. Heavy metal ATPase-dependent efflux of Zn2+ is another mechanism to control cytosolic Zn. Spatially controlled Zn2+ influx or release from intracellular stores would result in dynamic modulation of cellular Zn pools, which may directly influence protein-protein interactions or the activities of enzymes involved in signaling cascades. Possible regulatory roles of such changes, as recently elucidated in mammalian cells, are discussed.


Assuntos
Metais , Zinco , Animais , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras , Metais/metabolismo , Vacúolos/metabolismo , Zinco/metabolismo
13.
Plant Mol Biol ; 109(4-5): 563-577, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34837578

RESUMO

KEY MESSAGE: An organomercurial phenylmercury activates AtPCS1, an enzyme known for detoxification of inorganic metal(loid) ions in Arabidopsis and the induced metal-chelating peptides phytochelatins are essential for detoxification of phenylmercury. Small thiol-rich peptides phytochelatins (PCs) and their synthases (PCSs) are crucial for plants to mitigate the stress derived from various metal(loid) ions in their inorganic form including inorganic mercury [Hg(II)]. However, the possible roles of the PC/PCS system in organic mercury detoxification in plants remain elusive. We found that an organomercury phenylmercury (PheHg) induced PC synthesis in Arabidopsis thaliana plants as Hg(II), whereas methylmercury did not. The analyses of AtPCS1 mutant plants and in vitro assays using the AtPCS1-recombinant protein demonstrated that AtPCS1, the major PCS in A. thaliana, was responsible for the PheHg-responsive PC synthesis. AtPCS1 mutants cad1-3 and cad1-6, and the double mutant of PC-metal(loid) complex transporters AtABCC1 and AtABCC2 showed enhanced sensitivity to PheHg as well as to Hg(II). The hypersensitivity of cad1-3 to PheHg stress was complemented by the own-promoter-driven expression of AtPCS1-GFP. The confocal microscopy of the complementation lines showed that the AtPCS1-GFP was preferentially expressed in epidermal cells of the mature and elongation zones, and the outer-most layer of the lateral root cap cells in the meristematic zone. Moreover, in vitro PC-metal binding assay demonstrated that binding affinity between PC and PheHg was comparable to Hg(II). However, plant ionomic profiles, as well as root morphology under PheHg and Hg(II) stress, were divergent. These results suggest that PheHg phytotoxicity is different from Hg(II), but AtPCS1-mediated PC synthesis, complex formation, and vacuolar sequestration by AtABCC1 and AtABCC2 are similarly functional for both PheHg and Hg(II) detoxification in root surficial cell types.


Assuntos
Aminoaciltransferases , Proteínas de Arabidopsis , Arabidopsis , Mercúrio , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/metabolismo , Glutationa/metabolismo , Íons/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Fitoquelatinas/metabolismo
14.
Proc Biol Sci ; 288(1959): 20211682, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583580

RESUMO

Plants have been shown to change their foraging behaviour in response to resource heterogeneity. However, an unexplored hypothesis is that foraging could be induced by environmental stressors, such as herbivory, which might increase the demand for particular resources, such as those required for herbivore defence. This study examined the way simulated herbivory affects both root foraging for and uptake of cadmium (Cd), in the metal-hyperaccumulating plant Arabidopsis halleri, which uses this heavy metal as herbivore defence. Simulated herbivory elicited enhanced relative allocation of roots to Cd-rich patches as well as enhanced Cd uptake, and these responses were exhibited particularly by plants from non-metalliferous origin, which have lower metal tolerance. By contrast, plants from a metalliferous origin, which are more tolerant to Cd, did not show any preference in root allocation, yet enhanced Cd sharing between ramets when exposed to herbivory. These results suggest that foraging for heavy metals, as well as their uptake and clonal-sharing, could be stimulated in A. halleri by herbivory impact. Our study provides first support for the idea that herbivory can induce not only defence responses in plants but also affect their foraging, resource uptake and clonal sharing responses.


Assuntos
Arabidopsis , Metais Pesados , Cádmio , Herbivoria , Folhas de Planta
15.
Oecologia ; 197(1): 157-165, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34370097

RESUMO

Plants can respond to competition with a myriad of physiological or morphological changes. Competition has also been shown to affect the foraging decisions of plants belowground. However, a completely unexplored idea is that competition might also affect plants' foraging for specific elements required to inhibit the growth of their competitors. In this study, we examined the effect of simulated competition on root foraging and accumulation of heavy metals in the metal hyperaccumulating perennial plant Arabidopsis halleri, whose metal accumulation has been shown to provide allelopathic ability. A. halleri plants originating from both metalliferous and non-metalliferous soils were grown in a "split-root" setup with one root in a high-metal pot and the other in a low-metal one. The plants were then assigned to either simulated light competition or no-competition (control) treatments, using vertical green or clear plastic filters, respectively. While simulated light competition did not induce greater root allocation into the high-metal pots, it did result in enhanced metal accumulation by A. halleri, particularly in the less metal-tolerant plants, originating from non-metalliferous soils. Interestingly, this accumulation response was particularly enhanced for zinc rather than cadmium. These results provide support to the idea that the accumulation of metals by hyperaccumulating plants can be facultative and change according to their demand following competition.


Assuntos
Arabidopsis , Metais Pesados , Cádmio , Solo , Zinco
17.
Trends Plant Sci ; 26(6): 600-606, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33893049

RESUMO

The European Commission's Farm to Fork (F2F) strategy, under the European Green Deal, acknowledges that innovative techniques, including biotechnology, may play a role in increasing sustainability. At the same time, organic farming will be promoted, and at least 25% of the EU's agricultural land shall be under organic farming by 2030. How can both biotechnology and organic farming be developed and promoted simultaneously to contribute to achieving the Sustainable Development Goals (SDGs)? We illustrate that achieving the SDGs benefits from the inclusion of recent innovations in biotechnology in organic farming. This requires a change in the law. Otherwise, the planned increase of organic production in the F2F strategy may result in less sustainable, not more sustainable, food systems.


Assuntos
Objetivos , Agricultura Orgânica , Biotecnologia , Europa (Continente) , Fazendas
18.
19.
Plant Cell Environ ; 44(1): 17-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33047320

RESUMO

This article comments on: GeSUT4 mediates sucrose import at the symbiotic interface for carbon allocation of heterotrophic Gastrodia elata (Orchidaceae).


Assuntos
Gastrodia , Mel , Orchidaceae , Carbono , Fungos , Alocação de Recursos , Sacarose , Açúcares , Roubo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...