Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615817

RESUMO

Innovative analytical instruments and development of new methods has provided a better understanding of protein particle formation in biopharmaceuticals but have also challenged the ability to obtain reproducible and reliable measurements. The need for protein-like particle standards mimicking the irregular shape, translucent nature and near-to-neutral buoyancy of protein particles remained one of the hot topics in the field of particle detection and characterization in biopharmaceutical formulations. An innovative protein-like particle model has been developed using two photo polymerization (2PP) printing allowing to fabricate irregularly shaped particles with similar properties as protein particles at precise size of 50 µm and 150 µm, representative of subvisible particles and visible particles, respectively. A study was conducted to compare the morphological, physical, and optical properties of artificially generated protein particles, polystyrene spheres, ETFE, and SU-8 particle standards, along with newly developed protein-like model particles manufactured using 2PP printing. Our results suggest that 2PP printing can be used to produce protein-like particle standards that might facilitate harmonization and standardization of subvisible and visible protein particle characterization across laboratories and organizations.

2.
Macromol Biosci ; 16(5): 655-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26766666

RESUMO

Medical treatment of diseases of the central nervous system requires transport of drugs across the blood-brain barrier (BBB). Here, it is extended previously in vitro experiments with a model compound to show that the non-water-soluble and brain-impermeable drug domperidone (DOM) itself can be enriched in the brain by use of an amphiphilic copolymer as a carrier. This carrier consists of poly(N-(2-hydroxypropyl)-methacrylamide), statistically copolymerized with 10 mol% hydrophobic lauryl methacrylate, into whose micellar aggregates DOM is noncovalently absorbed. As tested in a BBB model efficient transport of DOM across, the BBB is achievable over a wide range of formulations, containing 0.8 to 35.5 wt% domperidone per copolymer. In neither case, the polymer itself is translocated across the BBB model. In vivo experiments in mice show that already 10 min after intraperitoneal injection of the polymer/domperidone (PolyDOM) formulation, domperidone can be detected in blood and in the brain. Highest serum and brain levels of domperidone are detected 40 min after injection. At that time point serum domperidone is increased 48-fold. Most importantly, domperidone is exclusively detectable in high amounts in the brain of PolyDOM injected mice and not in mice injected with bare domperidone.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Polímeros/química , Animais , Domperidona/administração & dosagem , Domperidona/química , Humanos , Metacrilatos/administração & dosagem , Metacrilatos/química , Camundongos , Micelas , Polímeros/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...