Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(7): 073903, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752831

RESUMO

We present a rheometer that combines the possibility to perform in situ X-ray experiments with a precise and locally controlled uniaxial extensional flow. It thus allows us to study the crystallization kinetics and morphology evolution combined with the rheological response to the applied flow field. A constant uniaxial deformation rate is ensured, thanks to a fast control scheme that drives the simultaneous movement of the top and bottom plates during a pulling experiment. A laser micrometer measures the time evolution of the smallest diameter, where the highest stress is concentrated. The rheometer has a copper temperature-controlled oven with the ability to reach 250 °C and a N2 connection to create an inert atmosphere during the experiments. The innovation of our rheometer is the fixed location of the midfilament position, which is possible because of the simultaneous controlled movement of the two end plates. The copper oven has been constructed with four ad hoc windows: two glass windows for laser access and two Kapton windows for X-ray access. The key feature is the ability to perfectly align the midfilament of the sample to the laser micrometer and to the incoming X-ray beam in a synchrotron radiation facility, making it possible to investigate the structure and morphologies developed during extensional flow. The rheological response measured with our rheometer for low-density polyethylene (LDPE) is in agreement with the linear viscoelastic envelope and with the results obtained from the existing extensional rheometers. To demonstrate the capability of the instrument, we have performed in situ-resolved X-ray experiments on LDPE samples exhibiting extensional flow-induced crystallization.

2.
Rev Sci Instrum ; 90(8): 083905, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472607

RESUMO

We present a unique laser sintering setup that allows real time studies of the structural evolution during laser sintering of polymer particles. The device incorporates the main features of classical selective laser sintering machines for 3D printing of polymers and at the same time allows in situ visualization of the sintering dynamics with optical microscopy as well as X-ray scattering. A main feature of the setup is the fact that it provides local access to one particle-particle bridge during sintering. In addition, due to the small scale of the device and the specific laser arrangement process, parameters such as the temperature, laser energy, laser pulse duration, and spot size can be precisely controlled. The sample chamber provides heating up to 360 °C, which allows for sintering of commodity as well as high performance polymers. The latter parameters are controlled by the use of a visible light laser combined with an acousto-optic modulator for pulsing, which allows small and precise spot sizes and pulse times and pulse energies as low as 500 µs and 17 µJ. The macrostructural evolution of the particle bridge during sintering is followed via optical imaging at high speed and resolution. Placing the setup in high flux synchrotron radiation with a fast detector simultaneously allows in situ time-resolved X-ray characterizations. To demonstrate the capabilities of the device, we studied the laser sintering of two spherical PA12 particles. The setup provides crucial real-time information concerning the sintering dynamics as well as crystallization kinetics, which was not accessible up to now.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...