Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953583

RESUMO

Van der Waals (vdW) magnets both allow exploration of fundamental 2D physics and offer a route toward exploiting magnetism in next generation information technology, but vdW magnets with complex, noncollinear spin textures are currently rare. We report here the syntheses, crystal structures, magnetic properties and magnetic ground states of four bulk vdW metal-organic magnets (MOMs): FeCl2(pym), FeCl2(btd), NiCl2(pym), and NiCl2(btd), pym = pyrimidine and btd = 2,1,3-benzothiadiazole. Using a combination of neutron diffraction and bulk magnetometry we show that these materials are noncollinear magnets. Although only NiCl2(btd) has a ferromagnetic ground state, we demonstrate that low-field hysteretic metamagnetic transitions produce states with net magnetization in zero-field and high coercivities for FeCl2(pym) and NiCl2(pym). By combining our bulk magnetic data with diffuse scattering analysis and broken-symmetry density-functional calculations, we probe the magnetic superexchange interactions, which when combined with symmetry analysis allow us to suggest design principles for future noncollinear vdW MOMs. These materials, if delaminated, would prove an interesting new family of 2D magnets.

2.
Phys Chem Chem Phys ; 26(22): 15844-15849, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38779829

RESUMO

We report the magnetic structure and properties of a thiocyanate-based honeycomb magnet [Na(OH2)3]Mn(NCS)3 which crystallises in the unusual low-symmetry trigonal space group P3̄. Magnetic measurements on powder samples show this material is an antiferromagnet (ordering temperature TN,mag = 18.1(6) K) and can be described by nearest neighbour antiferromagnetic interactions J = -11.07(4) K. A method for growing neutron-diffraction sized single crystals (>10 mm3) is demonstrated. Low temperature neutron single crystal diffraction shows that the compound adopts the collinear antiferromagnetic structure with TN,neut = 18.94(7) K, magnetic space group P3̄'. Low temperature second-harmonic generation (SHG) measurements provide no evidence of breaking of the centre of symmetry.

3.
ACS Appl Mater Interfaces ; 16(14): 17812-17820, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557002

RESUMO

Two-dimensional metal-organic nanosheets (MONs) have emerged as attractive alternatives to their three-dimensional metal-organic framework (MOF) counterparts for heterogeneous catalysis due to their greater external surface areas and higher accessibility of catalytically active sites. Zr MONs are particularly prized because of their chemical stability and high Lewis and Brønsted acidities of the Zr clusters. Herein, we show that careful control over modulated self-assembly and exfoliation conditions allows the isolation of the first example of a two-dimensional nanosheet wherein Zr6 clusters are linked by dicarboxylate ligands. The hxl topology MOF, termed GUF-14 (GUF = Glasgow University Framework), can be exfoliated into monolayer thickness hns topology MONs, and acid-induced removal of capping modulator units yields MONs with enhanced catalytic activity toward the formation of imines and the hydrolysis of an organophosphate nerve agent mimic. The discovery of GUF-14 serves as a valuable example of the undiscovered MOF/MON structural diversity extant in established metal-ligand systems that can be accessed by harnessing the power of modulated self-assembly protocols.

4.
ACS Nano ; 18(9): 7148-7160, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38383159

RESUMO

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a need to develop analytical tools capable of precisely probing spin information at the single-particle level. In this work, we demonstrate a methodology using negatively charged nitrogen vacancies (NV-) in fluorescent nanodiamond (FND) particles to probe the magnetic switching of a spin crossover (SCO) metal-organic framework (MOF), [Fe(1,6-naphthyridine)2(Ag(CN)2)2] material (1), and a single-molecule photomagnet [X(18-crown-6)(H2O)3]Fe(CN)6·2H2O, where X = Eu and Dy (materials 2a and 2b, respectively), in response to heat, light, and electron beam exposure. We employ correlative light-electron microscopy using transmission electron microscopy (TEM) finder grids to accurately image and sense spin-spin interacting particles down to the single-particle level. We used surface-sensitive optically detected magnetic resonance (ODMR) and magnetic modulation (MM) of FND photoluminescence (PL) to sense spins to a distance of ca. 10-30 nm. We show that ODMR and MM sensing was not sensitive to the temperature-induced SCO of FeII in 1 as formation of paramagnetic FeIII through surface oxidation (detected by X-ray photoelectron spectroscopy) on heating obscured the signal of bulk SCO switching. We found that proximal FNDs could effectively sense the chemical transformations induced by the 200 keV electron beam in 1, namely, AgI → Ag0 and FeII → FeIII. However, transformations induced by the electron beam are irreversible as they substantially disrupt the structure of MOF particles. Finally, we demonstrate NV- sensing of reversible photomagnetic switching, FeIII + (18-crown-6) ⇆ FeII + (18-crown-6)+ •, triggered in 2a and 2b by 405 nm light. The photoredox process of 2a and 2b proved to be the best candidate for room-temperature single-particle magnetic switching utilizing FNDs as a sensor, which could have applications into next-generation quantum technologies.

5.
Adv Mater ; 36(15): e2304832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37669645

RESUMO

Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs.

6.
Nanoscale Adv ; 5(23): 6423-6434, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024305

RESUMO

Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical composition with functional magnetic properties at the nanoscale level are needed. In this work, we combine the power of two local probes, namely, Nitrogen Vacancy (NV) spin-active defects in diamond and an electron beam, within experimental platforms used in electron microscopy. Negatively charged NVs within fluorescent nanodiamond (FND) particles are used to sense the local paramagnetic environment of Rb0.5Co1.3[Fe(CN)6]·3.7H2O nanoparticles (NPs), a Prussian blue analogue (PBA), as a function of FND-PBA distance (order of 10 nm) and local PBA concentration. We demonstrate perturbation of NV spins by proximal electron spins of transition metals within NPs, as detected by changes in the photoluminescence (PL) of NVs. Workflows are reported and demonstrated that employ a Transmission Electron Microscope (TEM) finder grid to spatially correlate functional and structural features of the same unique NP studied using NV sensing, based on a combination of Optically Detected Magnetic Resonance (ODMR) and Magnetic Modulation (MM) of NV PL, within TEM imaging modalities. Significantly, spin-spin dipole interactions were detected between NVs in a single FND and paramagnetic metal centre spin fluctuations in NPs through a carbon film barrier of 13 nm thickness, evidenced by TEM tilt series imaging and Electron Energy-Loss Spectroscopy (EELS), opening new avenues to sense magnetic materials encapsulated in or between thin-layered nanostructures. The measurement strategies reported herein provide a pathway towards solid-state quantitative NV sensing with atomic-scale theoretical spatial resolution, critical to the development of quantum technologies, such as memory storage and molecular switching nanodevices.

7.
Chem Sci ; 14(13): 3531-3540, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37006672

RESUMO

AMX3 compounds are structurally diverse, a notable example being the post-perovskite structure which adopts a two-dimensional framework with corner- and edge-sharing octahedra. Few molecular post-perovskites are known and of these, none have reported magnetic structures. Here we report the synthesis, structure and magnetic properties of molecular post-perovskites: CsNi(NCS)3, a thiocyanate framework, and two new isostructural analogues CsCo(NCS)3 and CsMn(NCS)3. Magnetisation measurements show that all three compounds undergo magnetic order. CsNi(NCS)3 (Curie temperature, T C = 8.5(1) K) and CsCo(NCS)3 (T C = 6.7(1) K) order as weak ferromagnets. On the other hand, CsMn(NCS)3 orders as an antiferromagnet (Néel temperature, T N = 16.8(8) K). Neutron diffraction data of CsNi(NCS)3 and CsMn(NCS)3, show that both are non-collinear magnets. These results suggest molecular frameworks are fruitful ground for realising the spin textures required for the next generation of information technology.

8.
Sci Adv ; 9(6): eade6975, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763650

RESUMO

Crystalline materials are often considered to have rigid periodic lattices, while soft materials are associated with flexibility and nonperiodicity. The continuous evolution of metal-organic frameworks (MOFs) has erased the boundaries between these two distinct conceptions. Flexibility, disorder, and defects have been found to be abundant in MOF materials with imperfect crystallinity, and their intricate interplay is poorly understood because of the limited strategies for characterizing disordered structures. Here, we apply advanced nuclear magnetic resonance spectroscopy to elucidate the mesoscale structures in a defective MOF with a semicrystalline lattice. We show that engineered defects can tune the degree of lattice flexibility by combining both ordered and disordered compartments. The one-dimensional alignment of correlated defects is the key for the reversible topological transition. The unique matrix is featured with both rigid framework of nanoporosity and flexible linkage of high swellability.

9.
J Am Chem Soc ; 145(3): 1783-1792, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626185

RESUMO

Metal-organic magnets (MOMs), modular magnetic materials where metal atoms are connected by organic linkers, are promising candidates for next-generation quantum technologies. MOMs readily form low-dimensional structures and so are ideal systems to realize physical examples of key quantum models, including the Haldane phase, where a topological excitation gap occurs in integer-spin antiferromagnetic (AFM) chains. Thus, far the Haldane phase has only been identified for S = 1, with S ≥ 2 still unrealized because the larger spin imposes more stringent requirements on the magnetic interactions. Here, we report the structure and magnetic properties of CrCl2(pym) (pym = pyrimidine), a new quasi-1D S = 2 AFM MOM. We show, using X-ray and neutron diffraction, bulk property measurements, density-functional theory calculations, and inelastic neutron spectroscopy (INS), that CrCl2(pym) consists of AFM CrCl2 spin chains (J1 = -1.13(4) meV) which are weakly ferromagnetically coupled through bridging pym (J2 = 0.10(2) meV), with easy-axis anisotropy (D = -0.15(3) meV). We find that, although small compared to J1, these additional interactions are sufficient to prevent observation of the Haldane phase in this material. Nevertheless, the proximity to the Haldane phase together with the modularity of MOMs suggests that layered Cr(II) MOMs are a promising family to search for the elusive S = 2 Haldane phase.

10.
Dalton Trans ; 51(47): 18118-18126, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36377852

RESUMO

Two-coordinate transition metal complexes are exciting candidates for single-molecule magnets (SMMs) because their highly axial coordination environments lead to sizeable magnetic anisotropy. We report a series of five structurally related two-coordinate Fe(II) m-terphenyl complexes (4-R-2,6-Xyl2C6H2)2Fe [R = tBu (1), SiMe3 (2), H (3), Cl (4), CF3 (5)] where, by changing the functionalisation of the para-substituent (R), we alter their magnetic function. All five complexes are field-induced single-molecule magnets, with relaxation rates that are well-described by a combination of direct and Raman mechanisms. By using more electron donating R groups we were able to slow the rate of magnetic relaxation. Our ab initio calculations predict a large crystal field splitting (>850 cm-1) and sizeable zero-field splitting parameters (ca. -60 cm-1, |E| < 0.2 cm-1) for 1-5. These favourable magnetic properties suggest that m-terphenyl ligands have untapped potential as chemically versatile ligands able to impose highly axial crystal fields.

11.
Inorg Chem ; 61(31): 12284-12292, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881551

RESUMO

Metal-organic frameworks (MOFs) can be constructed using conventional molecular linkers or polymeric linkers (polyMOFs), but the relationship and relative properties of these related materials remain understudied. As an intermediate between these two extremes, a library of oligomeric ligand precursors (dimers, trimers) was used to prepare a series of oligomeric-linker MOFs (oligoMOFs) based on the prototypical IRMOF-1 system. IRMOF-1 was found to be remarkably tolerant to a wide variety of oligomeric linkers, the use of which greatly enhanced the MOF yield and prevented framework interpenetration. Tether length-dependent ordering of ligand and metal cluster orientations was also observed in these oligoMOFs. Improved low-humidity stability was found in oligoIRMOF-1 samples, with surface area preservation varying as a function of tether length and a complete suppression of crystalline hydrolysis products for all oligoIRMOF-1 materials. These findings pave the way toward a better understanding of the structure-function relationships between monomeric, oligomeric, and polymeric MOFs and highlight an underutilized strategy for tuning MOF properties.

12.
J Am Chem Soc ; 143(47): 19668-19683, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784470

RESUMO

The structures of Zr and Hf metal-organic frameworks (MOFs) are very sensitive to small changes in synthetic conditions. One key difference affecting the structure of UiO MOF phases is the shape and nuclearity of Zr or Hf metal clusters acting as nodes in the framework; although these clusters are crucial, their evolution during MOF synthesis is not fully understood. In this paper, we explore the nature of Hf metal clusters that form in different reaction solutions, including in a mixture of DMF, formic acid, and water. We show that the choice of solvent and reaction temperature in UiO MOF syntheses determines the cluster identity and hence the MOF structure. Using in situ X-ray pair distribution function measurements, we demonstrate that the evolution of different Hf cluster species can be tracked during UiO MOF synthesis, from solution stages to the full crystalline framework, and use our understanding to propose a formation mechanism for the hcp UiO-66(Hf) MOF, in which first the metal clusters aggregate from the M6 cluster (as in fcu UiO-66) to the hcp-characteristic M12 double cluster and, following this, the crystalline hcp framework forms. These insights pave the way toward rationally designing syntheses of as-yet unknown MOF structures, via tuning the synthesis conditions to select different cluster species.

13.
Chem Sci ; 12(10): 3516-3525, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34163625

RESUMO

We report four new A-site vacancy ordered thiocyanate double double perovskites, , A = K+, NH4 +, CH3(NH3)+ (MeNH3 +) and C(NH2)3 + (Gua+), including the first examples of thiocyanate perovskites containing organic A-site cations. We show, using a combination of X-ray and neutron diffraction, that the structure of these frameworks depends on the A-site cation, and that these frameworks possess complex vacancy-ordering patterns and cooperative octahedral tilts distinctly different from atomic perovskites. Density functional theory calculations uncover the energetic origin of these complex orders and allow us to propose a simple rule to predict favoured A-site cation orderings for a given tilt sequence. We use these insights, in combination with symmetry mode analyses, to show that these complex orders suggest a new route to non-centrosymmetric perovskites, and mean this family of materials could contain excellent candidates for piezo- and ferroelectric applications.

14.
Inorg Chem ; 59(16): 11627-11639, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799496

RESUMO

Understanding the effect of chemical composition on the strength of magnetic interactions is key to the design of magnets with high operating temperatures. The magnetic divalent first-row transition metal (TM) thiocyanates are a class of chemically simple layered molecular frameworks. Here, we report two new members of the family, manganese(II) thiocyanate, Mn(NCS)2, and iron(II) thiocyanate, Fe(NCS)2. Using magnetic susceptibility measurements on these materials and on cobalt(II) thiocyanate and nickel(II) thiocyanate, Co(NCS)2 and Ni(NCS)2, respectively, we identify significantly stronger net antiferromagnetic interactions between the earlier TM ions-a decrease in the Weiss constant, θ, from 29 K for Ni(NCS)2 to -115 K for Mn(NCS)2-a consequence of more diffuse 3d orbitals, increased orbital overlap, and increasing numbers of unpaired t2g electrons. We elucidate the magnetic structures of these materials: Mn(NCS)2, Fe(NCS)2, and Co(NCS)2 order into the same antiferromagnetic commensurate ground state, while Ni(NCS)2 adopts a ground state structure consisting of ferromagnetically ordered layers stacked antiferromagnetically. We show that significantly stronger exchange interactions can be realized in these thiocyanate frameworks by using earlier TMs.

15.
J Am Chem Soc ; 142(30): 13081-13089, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32627544

RESUMO

Defect engineering can enhance key properties of metal-organic frameworks (MOFs). Tailoring the distribution of defects, for example in correlated nanodomains, requires characterization across length scales. However, a critical nanoscale characterization gap has emerged between the bulk diffraction techniques used to detect defect nanodomains and the subnanometer imaging used to observe individual defects. Here, we demonstrate that the emerging technique of scanning electron diffraction (SED) can bridge this gap uniquely enabling both nanoscale crystallographic analysis and the low-dose formation of multiple diffraction contrast images for defect analysis in MOFs. We directly image defect nanodomains in the MOF UiO-66(Hf) over an area of ca. 1000 nm and with a spatial resolution ca. 5 nm to reveal domain morphology and distribution. Based on these observations, we suggest possible crystal growth processes underpinning synthetic control of defect nanodomains. We also identify likely dislocations and small angle grain boundaries, illustrating that SED could be a key technique in developing the potential for engineering the distribution of defects, or "microstructure", in functional MOF design.

16.
Rev Sci Instrum ; 91(2): 023901, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113437

RESUMO

We present an open-source program free to download for academic use with a full user-friendly graphical interface for performing flexible and robust background subtraction and dipole fitting on magnetization data. For magnetic samples with small moment sizes or sample environments with large or asymmetric magnetic backgrounds, it can become necessary to separate background and sample contributions to each measured raw voltage measurement before fitting the dipole signal to extract magnetic moments. Originally designed for use with pressure cells on a Quantum Design MPMS3 SQUID magnetometer, SquidLab is a modular object-oriented platform implemented in Matlab with a range of importers for different widely available magnetometer systems (including MPMS, MPMS-XL, MPMS-IQuantum, MPMS3, and S700X models) and has been tested with a broad variety of background and signal types. The software allows background subtraction of baseline signals, signal preprocessing, and performing fits to dipole data using Levenberg-Marquardt non-linear least squares or a singular value decomposition linear algebra algorithm that excels at picking out noisy or weak dipole signals. A plugin system allows users to easily extend the built-in functionality with their own importers, processes, or fitting algorithms. SquidLab can be downloaded, under Academic License, from the University of Warwick depository (wrap.warwick.ac.uk/129665).

17.
Chem Sci ; 11(17): 4430-4438, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-34122899

RESUMO

We report the structures of six new divalent transition metal hexathiocyanatobismuthate frameworks with the generic formula , M = Mn, Co, Ni and Zn. These frameworks are defective analogues of the perovskite-derived trivalent transition metal hexathiocyanatobismuthates MIII[Bi(SCN)6]. The defects in these new thiocyanate frameworks order and produce complex superstructures due to the low symmetry of the parent structure, in contrast to the related and more well-studied cyanide Prussian Blue analogues. Despite the close similarities in the chemistries of these four transition metal cations, we find that each framework contains a different mechanism for accommodating the lowered transition metal charge, making use of some combination of Bi(SCN)6 3- vacancies, MBi antisite defects, water substitution for thiocyanate, adventitious extra-framework cations and reduced metal coordination number. These materials provide an unusually clear view of defects in molecular framework materials and their variety suggests that similar richness may be waiting to be uncovered in other hybrid perovskite frameworks.

18.
J Am Chem Soc ; 141(42): 16706-16725, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31487157

RESUMO

TiNb2O7 is a Wadsley-Roth phase with a crystallographic shear structure and is a promising candidate for high-rate lithium ion energy storage. The fundamental aspects of the lithium insertion mechanism and conduction in TiNb2O7, however, are not well-characterized. Herein, experimental and computational insights are combined to understand the inherent properties of bulk TiNb2O7. The results show an increase in electronic conductivity of seven orders of magnitude upon lithiation and indicate that electrons exhibit both localized and delocalized character, with a maximum Curie constant and Li NMR paramagnetic shift near a composition of Li0.60TiNb2O7. Square-planar or distorted-five-coordinate lithium sites are calculated to invert between thermodynamic minima or transition states. Lithium diffusion in the single-redox region (i.e., x ≤ 3 in LixTiNb2O7) is rapid with low activation barriers from NMR and DLi = 10-11 m2 s-1 at the temperature of the observed T1 minima of 525-650 K for x ≥ 0.75. DFT calculations predict that ionic diffusion, like electronic conduction, is anisotropic with activation barriers for lithium hopping of 100-200 meV down the tunnels but ca. 700-1000 meV across the blocks. Lithium mobility is hindered in the multiredox region (i.e., x > 3 in LixTiNb2O7), related to a transition from interstitial-mediated to vacancy-mediated diffusion. Overall, lithium insertion leads to effective n-type self-doping of TiNb2O7 and high-rate conduction, while ionic motion is eventually hindered at high lithiation. Transition-state searching with beyond Li chemistries (Na+, K+, Mg2+) in TiNb2O7 reveals high diffusion barriers of 1-3 eV, indicating that this structure is specifically suited to Li+ mobility.

19.
Chem Commun (Camb) ; 55(61): 9027-9030, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31290883

RESUMO

Cation order, with a local structure related to γ-LiFeO2, is observed in the nominally cation-disordered Li-excess rocksalt Li1.25Nb0.25Mn0.5O2via X-ray diffraction, neutron pair distribution function analysis, magnetic susceptibility and NMR spectroscopy. The correlation length of ordering depends on synthesis conditions and has implications for the electrochemistry of these phases.

20.
Chem Sci ; 10(3): 793-801, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30774873

RESUMO

We report the first examples of thiocyanate-based analogues of the cyanide Prussian blue compounds, MIII[Bi(SCN)6], M = Fe, Cr, Sc. These compounds adopt the primitive cubic pcu topology and show strict cation order. Optical absorption measurements show these compounds have band gaps within the visible and near IR region, suggesting that they may be useful for applications where light harvesting is key, such as photocatalysis. We also show that Cr[Bi(SCN)6] can reversibly uptake water into its framework structure pointing towards the possibility of using these frameworks for host/guest chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...