Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 3(2): 331-8, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19236068

RESUMO

Photodetection in semiconductors enables digital imaging, spectroscopy, and optical communications. Integration of solution-processed light-sensing materials with a range of substrates offers access to new spectral regimes, the prospect of enhanced sensitivity, and compatibility with flexible electronics. Photoconductive photodetectors based on solution-cast nanocrystals have shown tremendous progress in recent years; however, high-performance reports to date have employed Pb- and Cd-containing materials. Here we report a high-sensitivity (photon-to-electron gain >40), high-speed (video-frame-rate-compatible) photoconductive photodetector based on In(2)S(3). Only by decreasing the energetic depth of hole traps associated with intrinsic vacancies in beta-phase In(2)S(3) were we able to achieve this needed combination of sensitivity and speed. Our incorporation of Cu(+) cations into beta-In(2)S(3)'s spinel vacancies that led to acceptable temporal response in the devices showcases the practicality of incorporating dopants into nanoparticles. The devices are stable in air and under heating to 215 degrees C, advantages rooted in the reliance on the stable inclusion of dopants into available sites instead of surface oxide species.

2.
Nat Nanotechnol ; 4(1): 40-4, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19119281

RESUMO

Solution-processed semiconductors are compatible with a range of substrates, which enables their direct integration with organic circuits, microfluidics, optical circuitry and commercial microelectronics. Ultrasensitive photodetectors based on solution-process colloidal quantum dots operating in both the visible and infrared have been demonstrated, but these devices have poor response times (on the scale of seconds) to changes in illumination, and rapid-response devices based on a photodiode architecture suffer from low sensitivity. Here, we show that the temporal response of these devices is determined by two components--electron drift, which is a fast process, and electron diffusion, which is a slow process. By building devices that exclude the diffusion component, we are able to demonstrate a >1,000-fold improvement in the sensitivity-bandwidth product of tuneable colloidal-quantum-dot photodiodes operating in the visible and infrared.


Assuntos
Coloides/química , Luz , Nanotecnologia , Pontos Quânticos , Fotoquímica , Semicondutores
3.
Opt Express ; 16(9): 6683-91, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18545372

RESUMO

We report the realization of large-area, communications-wavelength electro-optic modulators made via simple solution-casting onto an arbitrary substrate. The devices employ colloidal quantum dots synthesized in, and processed from, the solution phase. Devices exhibit greater than 30% modulation depth at the 1.55 microm eye-safe wavelengths of interest in free-space optical communications. The devices retain considerable modulation depth beyond 1 MHz.


Assuntos
Coloides/química , Óptica e Fotônica/instrumentação , Pontos Quânticos , Absorção , Eletricidade , Microscopia Eletrônica , Soluções , Fatores de Tempo
4.
Nature ; 442(7099): 180-3, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16838017

RESUMO

Solution-processed electronic and optoelectronic devices offer low cost, large device area, physical flexibility and convenient materials integration compared to conventional epitaxially grown, lattice-matched, crystalline semiconductor devices. Although the electronic or optoelectronic performance of these solution-processed devices is typically inferior to that of those fabricated by conventional routes, this can be tolerated for some applications in view of the other benefits. Here we report the fabrication of solution-processed infrared photodetectors that are superior in their normalized detectivity (D*, the figure of merit for detector sensitivity) to the best epitaxially grown devices operating at room temperature. We produced the devices in a single solution-processing step, overcoating a prefabricated planar electrode array with an unpatterned layer of PbS colloidal quantum dot nanocrystals. The devices showed large photoconductive gains with responsivities greater than 10(3) A W(-1). The best devices exhibited a normalized detectivity D* of 1.8 x 10(13) jones (1 jones = 1 cm Hz(1/2) W(-1)) at 1.3 microm at room temperature: today's highest performance infrared photodetectors are photovoltaic devices made from epitaxially grown InGaAs that exhibit peak D* in the 10(12) jones range at room temperature, whereas the previous record for D* from a photoconductive detector lies at 10(11) jones. The tailored selection of absorption onset energy through the quantum size effect, combined with deliberate engineering of the sequence of nanoparticle fusing and surface trap functionalization, underlie the superior performance achieved in this readily fabricated family of devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...