Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 158(10): 3259-3268, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531316

RESUMO

Vasomotor symptoms (VMS; or hot flashes) plague millions of reproductive-aged men and women who have natural or iatrogenic loss of sex steroid production. Many affected individuals are left without treatment options because of contraindications to hormone replacement therapy and the lack of equally effective nonhormonal alternatives. Moreover, development of safer, more effective therapies has been stymied by the lack of an animal model that recapitulates the hot-flash phenomenon and enables direct testing of hypotheses regarding the pathophysiology underlying hot flashes. To address these problems, we developed a murine model for hot flashes and a comprehensive method for measuring autonomic and behavioral thermoregulation in mice. We designed and constructed an instrument called a thermocline that produces a thermal gradient along which mice behaviorally adapt to a thermal challenge to their core body temperature set point while their thermal preference over time is tracked and recorded. We tested and validated this murine model for VMS by administration of a TRPV1 agonist and a neurokinin B receptor agonist, capsaicin and senktide, respectively, to unrestrained mice and observed their autonomic and behavioral responses. Following both treatments, the mice exhibited a VMS-like response characterized by a drop in core body temperature and cold-seeking behavior on the thermocline. Senktide also caused a rise in tail skin temperature and increased Fos expression in the median preoptic area, a hypothalamic temperature control center. This dynamic model may be used to fully explore the cellular and molecular bases for VMS and to develop and test new therapeutic options.


Assuntos
Adaptação Fisiológica/fisiologia , Fogachos/induzido quimicamente , Fogachos/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Receptores da Neurocinina-3/agonistas , Receptores da Neurocinina-3/fisiologia , Substância P/análogos & derivados , Animais , Comportamento Animal/fisiologia , Temperatura Corporal , Capsaicina/farmacologia , Modelos Animais de Doenças , Feminino , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Área Pré-Óptica/química , Área Pré-Óptica/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/análise , Temperatura Cutânea , Substância P/farmacologia
2.
Menopause ; 22(12): 1328-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25988798

RESUMO

OBJECTIVE: The etiology of postmenopausal hot flashes is poorly understood, making it difficult to develop and target ideal therapies. A network of hypothalamic estrogen-sensitive neurons producing kisspeptin, neurokinin B and dynorphin-called KNDy neurons-are located adjacent to the thermoregulatory center. KNDy neurons regulate pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). Dynorphin may inhibit this system by binding κ opioid receptors within the vicinity of KNDy neurons. We hypothesize that hot flashes are reduced by KNDy neuron manipulation. METHODS: A double-blind, cross-over, placebo-controlled pilot study evaluated the effects of a κ agonist. Hot flash frequency was the primary outcome. Twelve healthy postmenopausal women with moderate to severe hot flashes (aged 48-60 y) were randomized. Eight women with sufficient baseline hot flashes for statistical analysis completed all three interventions: placebo, standard-dose pentazocine/naloxone (50/0.5 mg), or low-dose pentazocine/naloxone (25/0.25 mg). In an inpatient research setting, each participant received the three interventions, in randomized order, on three separate days. On each day, an intravenous catheter was inserted for LH blood sampling, and skin conductance and Holter monitors were placed. Subjective hot flash frequency and severity were recorded. RESULTS: The mean (SEM) hot flash frequency 2 to 7 hours after therapy initiation was lower than that for placebo (standard-dose κ agonist, 4.75 [0.67] hot flashes per 5 h; low-dose κ agonist, 4.50 [0.57] hot flashes per 5 h; placebo, 5.94 [0.78] hot flashes per 5 h; P = 0.025). Hot flash intensity did not vary between interventions. LH pulsatility mirrored objective hot flashes in some--but not all--women. CONCLUSIONS: This pilot study suggests that κ agonists may affect menopausal vasomotor symptoms.


Assuntos
Fogachos/tratamento farmacológico , Pentazocina/uso terapêutico , Pós-Menopausa , Receptores Opioides kappa/agonistas , Analgésicos Opioides , Estudos Cross-Over , Método Duplo-Cego , Dinorfinas/biossíntese , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/biossíntese , Hormônio Luteinizante/metabolismo , Pessoa de Meia-Idade , Neurocinina B/biossíntese , Neurônios/fisiologia , Pentazocina/efeitos adversos , Placebos
3.
Endocrinology ; 154(8): 2784-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23736293

RESUMO

Kisspeptin (Kiss1) signaling to GnRH neurons is widely acknowledged to be a prerequisite for puberty and reproduction. Animals lacking functional genes for either kisspeptin or its receptor exhibit low gonadotropin secretion and infertility. Paradoxically, a recent study reported that genetic ablation of nearly all Kiss1-expressing neurons (Kiss1 neurons) does not impair reproduction, arguing that neither Kiss1 neurons nor their products are essential for sexual maturation. We posited that only minute quantities of kisspeptin are sufficient to support reproduction. If this were the case, animals having dramatically reduced Kiss1 expression might retain fertility, testifying to the redundancy of Kiss1 neurons and their products. To test this hypothesis and to determine whether males and females differ in the required amount of kisspeptin needed for reproduction, we used a mouse (Kiss1-CreGFP) that has a severe reduction in Kiss1 expression. Mice that are heterozygous and homozygous for this allele (Kiss1(Cre/+) and Kiss1(Cre/Cre)) have ∼50% and 95% reductions in Kiss1 transcript, respectively. We found that although male Kiss1(Cre/Cre) mice sire normal-sized litters, female Kiss1(Cre/Cre) mice exhibit significantly impaired fertility and ovulation. These observations suggest that males require only 5% of normal Kiss1 expression to be reproductively competent, whereas females require higher levels for reproductive success.


Assuntos
Kisspeptinas/metabolismo , Neurônios/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Animais , Dinorfinas/genética , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Expressão Gênica , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Precursores de Proteínas/genética , Receptores da Neurocinina-3/genética , Reprodução/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Fatores Sexuais , Maturidade Sexual/genética , Maturidade Sexual/fisiologia , Transdução de Sinais/genética , Taquicininas/genética
4.
Endocrinology ; 153(10): 4883-93, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22893725

RESUMO

At puberty, neurokinin B (NKB) and kisspeptin (Kiss1) may help to amplify GnRH secretion, but their precise roles remain ambiguous. We tested the hypothesis that NKB and Kiss1 are induced as a function of pubertal development, independently of the prevailing sex steroid milieu. We found that levels of Kiss1 mRNA in the arcuate nucleus (ARC) are increased prior to the age of puberty in GnRH/sex steroid-deficient hpg mice, yet levels of Kiss1 mRNA in wild-type mice remained constant, suggesting that sex steroids exert a negative feedback effect on Kiss1 expression early in development and across puberty. In contrast, levels of Tac2 mRNA, encoding NKB, and its receptor (NK3R; encoded by Tacr3) increased as a function of puberty in both wild-type and hpg mice, suggesting that during development Tac2 is less sensitive to sex steroid-dependent negative feedback than Kiss1. To compare the relative responsiveness of Tac2 and Kiss1 to the negative feedback effects of gonadal steroids, we examined the effect of estradiol (E(2)) on Tac2 and Kiss1 mRNA and found that Kiss1 gene expression was more sensitive than Tac2 to E(2)-induced inhibition at both juvenile and adult ages. This differential estrogen sensitivity was tested in vivo by the administration of E(2). Low levels of E(2) significantly suppressed Kiss1 expression in the ARC, whereas Tac2 suppression required higher E(2) levels, supporting differential sensitivity to E(2). Finally, to determine whether inhibition of NKB/NK3R signaling would block the onset of puberty, we administered an NK3R antagonist to prepubertal (before postnatal d 30) females and found no effect on markers of pubertal onset in either WT or hpg mice. These results indicate that the expression of Tac2 and Tacr3 in the ARC are markers of pubertal activation but that increased NKB/NK3R signaling alone is insufficient to trigger the onset of puberty in the mouse.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Retroalimentação Fisiológica/fisiologia , Kisspeptinas/metabolismo , Precursores de Proteínas/metabolismo , Maturidade Sexual/fisiologia , Taquicininas/metabolismo , Animais , Estradiol/sangue , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/genética , Hormônio Luteinizante/sangue , Camundongos , Camundongos Knockout , Neurocinina B/genética , Neurocinina B/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/genética , Transdução de Sinais/fisiologia , Taquicininas/genética
5.
J Neurosci ; 32(7): 2388-97, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396413

RESUMO

Human genetic studies have revealed that neurokinin B (NKB) and its receptor, neurokinin-3 receptor (NK3R), are essential elements for normal reproduction; however, the precise role of NKB-NK3R signaling in the initiation of puberty remains unknown. We investigated here the regulation of Tac2 and Tacr3 mRNAs (encoding NKB and NK3R, respectively) in female rats and demonstrated that their hypothalamic expression is increased along postnatal maturation. At puberty, both genes were widely expressed throughout the brain, including the lateral hypothalamic area and the arcuate nucleus (ARC)/medial basal hypothalamus, where the expression of Tacr3 increased across pubertal transition. We showed that central administration of senktide (NK3R agonist) induced luteinizing hormone (LH) secretion in prepubertal and peripubertal females. Conversely, chronic infusion of an NK3R antagonist during puberty moderately delayed the timing of vaginal opening (VO) and tended to decrease LH levels. The expression of NKB and its receptor was sensitive to changes in metabolic status during puberty, as reflected by a reduction in Tacr3 (and, to a lesser extent, Tac2) expression in the ARC after a 48 h fast. Yet, acute LH responses to senktide in pubertal females were preserved, if not augmented, under fasting conditions, suggesting sensitization of the NKB-NK3R-gonadotropin-releasing hormone signaling pathway under metabolic distress. Moreover, repeated administration of senktide to female rats with pubertal arrest due to chronic undernutrition rescued VO (in ∼50% of animals) and potently elicited LH release. Altogether, our observations suggest that NKB-NK3R signaling plays a role in pubertal maturation and that its alterations may contribute to pubertal disorders linked to metabolic stress and negative energy balance.


Assuntos
Metaboloma/fisiologia , Neurocinina B/fisiologia , Maturidade Sexual/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Feminino , Neurocinina B/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-3/metabolismo , Receptores da Neurocinina-3/fisiologia
6.
Endocrinology ; 152(11): 4298-309, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21933870

RESUMO

Neurons that produce kisspeptin play a critical role in reproduction. However, understanding the molecular physiology of kisspeptin neurons has been limited by the lack of an in vivo marker for those cells. Here, we report the development of a Kiss1-CreGFP knockin mouse, wherein the endogenous Kiss1 promoter directs the expression of a Cre recombinase-enhanced green fluorescent protein (GFP) fusion protein. The pattern of GFP expression in the brain of the knockin recapitulates what has been described earlier for Kiss1 in the male and female mouse, with prominent expression in the arcuate nucleus (ARC) (in both sexes) and the anteroventral periventricular nucleus (in females). Single-cell RT-PCR showed that the Kiss1 transcript is expressed in 100% of GFP-labeled cells, and the CreGFP transcript was regulated by estradiol in the same manner as the Kiss1 gene (i.e. inhibited in the ARC and induced in the anteroventral periventricular nucleus). We used this mouse to evaluate the biophysical properties of kisspeptin (Kiss1) neurons in the ARC of the female mouse. GFP-expressing Kiss1 neurons were identified in hypothalamic slice preparations of the ARC and patch clamped. Whole-cell (and loose attached) recordings revealed that Kiss1 neurons exhibit spontaneous activity and expressed both h- (pacemaker) and T-type calcium currents, and hyperpolarization-activated cyclic nucleotide-regulated 1-4 and CaV3.1 channel subtypes (measured by single cell RT-PCR), respectively. N-methyl-D-aspartate induced bursting activity, characterized by depolarizing/hyperpolarizing oscillations. Therefore, Kiss1 neurons in the ARC share molecular and electrophysiological properties of other CNS pacemaker neurons.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Reprodução/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Orquiectomia , Ovariectomia , Reprodução/efeitos dos fármacos
7.
Endocrinology ; 152(5): 2020-30, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21363930

RESUMO

Kisspeptin (encoded by the Kiss1 gene) is an important regulator of reproduction. In rodents, Kiss1 is expressed in two hypothalamic regions, the arcuate nucleus and anteroventral periventricular/ periventricular continuum, where it is regulated by sex steroids. However, the distribution, regulation, and functional significance of neural kisspeptin outside of the hypothalamus have not been studied and are poorly understood. Here, we report the expression of Kiss1 in the amygdala, predominantly in the medial nucleus of the amygdala (MeA), a region implicated in social and emotional behaviors as well as various aspects of reproduction. In gonadally intact rats and mice, Kiss1-expressing neurons were identified in the MeA of both sexes, with higher Kiss1 expression levels in adult males than females in diestrus. In rats, Kiss1 expression in the MeA changed as a function of the estrous cycle, with highest levels at proestrus. Next, we tested whether Kiss1 in the MeA is regulated by the circulating sex steroid milieu. Kiss1 levels in the MeA were low in gonadectomized mice and rats of both sexes, and treatment with either testosterone or estradiol amplified Kiss1 expression in this region. Testosterone's inductive effect on Kiss1 expression in the MeA likely occurs via estrogen receptor-dependent pathways, not through the androgen receptor, because dihydrotestosterone (a nonaromatizable androgen) did not affect MeA Kiss1 levels. Thus, in rodents, Kiss1 is expressed and regulated by sex steroids in the MeA of both sexes and may play a role in modulating reproduction or brain functions that extend beyond reproduction.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteínas/genética , Esteroides/farmacologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Androgênios/farmacologia , Animais , Estradiol/farmacologia , Estrogênios/farmacologia , Ciclo Estral/genética , Feminino , Hibridização In Situ , Kisspeptinas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Orquiectomia , Ovariectomia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores Sexuais , Testosterona/farmacologia , Regulação para Cima/efeitos dos fármacos
8.
Am J Physiol Endocrinol Metab ; 300(1): E202-10, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21045176

RESUMO

Neurokinin B (NKB) and its cognate receptor neurokinin 3 (NK3R) play a critical role in reproduction. NKB and NK3R are coexpressed with dynorphin (Dyn) and kisspeptin (Kiss1) genes in neurons of the arcuate nucleus (Arc). However, the mechanisms of action of NKB as a cotransmitter with kisspeptin and dynorphin remain poorly understood. We explored the role of NKB in the control of LH secretion in the female rat as follows. 1) We examined the effect of an NKB agonist (senktide, 600 pmol, administered into the lateral cerebral ventricle) on luteinizing hormone (LH) secretion. In the presence of physiological levels of estradiol (E(2)), senktide induced a profound increase in serum levels of LH and a 10-fold increase in the number of Kiss1 neurons expressing c-fos in the Arc (P < 0.01 for both). 2) We mapped the distribution of NKB and NK3R mRNAs in the central forebrain and found that both are widely expressed, with intense expression in several hypothalamic nuclei that control reproduction, including the Arc. 3) We studied the effect of E(2) on the expression of NKB and NK3R mRNAs in the Arc and found that E(2) inhibits the expression of both genes (P < 0.01) and that the expression of NKB and NK3R reaches its nadir on the afternoon of proestrus (when circulating levels of E(2) are high). These observations suggest that NKB/NK3R signaling in Kiss1/NKB/Dyn-producing neurons in the Arc has a pivotal role in the control of gonadotropin-releasing hormone (GnRH)/LH secretion and its regulation by E(2)-dependent negative feedback in the rat.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Receptores da Neurocinina-3/metabolismo , Transdução de Sinais , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Estradiol/metabolismo , Ciclo Estral/metabolismo , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica , Kisspeptinas , Hormônio Luteinizante/sangue , Neurocinina B/agonistas , Neurocinina B/genética , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Fragmentos de Peptídeos/farmacologia , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores da Neurocinina-3/agonistas , Receptores da Neurocinina-3/genética , Transdução de Sinais/efeitos dos fármacos , Substância P/análogos & derivados , Substância P/farmacologia
9.
J Neurosci ; 30(8): 3124-32, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181609

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses. Using double and triple labeling, we confirmed that all three neuropeptides are coexpressed in the same population of neurons. Using electrophysiological techniques to record multiple-unit activity (MUA) in the medial basal hypothalamus, we found that bursts of MUA occurred at regular intervals in ovariectomized animals and that these repetitive bursts (volleys) were invariably associated with discrete pulses of luteinizing hormone (LH) (and by inference GnRH). Moreover, the frequency of MUA volleys was reduced by gonadal steroids, suggesting that the volleys reflect the rhythmic discharge of steroid-sensitive neurons that regulate GnRH secretion. Finally, we observed that central administration of Dyn-inhibit MUA volleys and pulsatile LH secretion, whereas NKB induced MUA volleys. These observations are consistent with the hypothesis that kisspeptin neurons in the ARC drive pulsatile GnRH and LH secretion, and suggest that NKB and Dyn expressed in those neurons are involved in the process of generating the rhythmic discharge of kisspeptin.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/fisiologia , Eletrofisiologia , Ciclo Estral/fisiologia , Feminino , Cabras , Hormônios Esteroides Gonadais/metabolismo , Kisspeptinas , Hormônio Luteinizante/metabolismo , Sistemas Neurossecretores/fisiologia , Ovariectomia , Periodicidade , Proteínas/metabolismo , Reprodução/fisiologia
10.
Am J Physiol Endocrinol Metab ; 298(1): E80-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19861584

RESUMO

In female mammals, increased ovarian estradiol (E(2)) secretion triggers GnRH release from neurons in the basal forebrain, which drives LH secretion from the pituitary and subsequently induces ovulation. However, the neural circuits that activate this preovulatory GnRH/LH surge remain unidentified. Neurotensin is expressed in neurons of the anteroventral periventricular nucleus (AVPV), a region thought to be critical for generating the preovulatory GnRH/LH surge. E(2) induces neurotensin (Nts) gene expression in this region, and blockade of neurotensin signaling reduces the LH surge in the rat. We postulated that neurotensin signaling plays a similar role in generating the E(2)-induced GnRH/LH surge in mice. We used in situ hybridization (ISH) to determine whether E(2) induces Nts expression in the mouse and found evidence to support this proposition. Next, we determined that the neurotensin receptor (Ntsr2) is present in many GnRH-expressing neurons. Since the kisspeptin gene (Kiss1) is expressed in the AVPV and is responsive to E(2), we predicted that some neurons in this region express both Kiss1 and Nts; however, by double-label ISH, we observed no coexpression of the two mRNAs. We also postulated that Nts mRNA expression would increase in parallel with the E(2)-induced LH surge and that the central (icv) administration of neurotensin would stimulate LH secretion and activation of GnRH neurons but found no evidence to support either of these hypotheses. Together, these findings suggest that, although neurotensin neurons in the AVPV are targets for regulation by E(2), neurotensin does not appear to play a direct role in generating the GnRH/LH surge in the mouse.


Assuntos
Retroalimentação Fisiológica/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Neurotensina/metabolismo , Animais , Comunicação Celular/fisiologia , Estradiol/farmacologia , Estrogênios/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Genes fos/fisiologia , Hipotálamo Médio/citologia , Hipotálamo Médio/fisiologia , Imuno-Histoquímica , Injeções Intraventriculares , Kisspeptinas , Eminência Mediana/citologia , Eminência Mediana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurotensina/genética , Ovariectomia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Am J Physiol Endocrinol Metab ; 297(5): E1212-21, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19755669

RESUMO

In mammals, puberty onset typically occurs earlier in females than in males, but the explanation for sexual differentiation in the tempo of pubertal development is unknown. Puberty in both sexes is a brain-dependent phenomenon and involves alterations in the sensitivity of neuronal circuits to gonadal steroid feedback as well as gonadal hormone-independent changes in neuronal circuitry. Kisspeptin, encoded by the Kiss1 gene, plays an essential but ill-defined role in pubertal maturation. Neurokinin B (NKB) is coexpressed with Kiss1 in the arcuate nucleus (ARC) and is also important for puberty. We tested whether sex differences in the timing of pubertal development are attributable to sexual differentiation of gonadal hormone-independent mechanisms regulating hypothalamic Kiss1/NKB gene expression. We found that, in juvenile females, gonadotropin secretion and expression of Kiss1 and NKB in the ARC increased immediately following ovariectomy, suggesting that prepubertal females have negligible gonadal hormone-independent restraint on their reproductive axis. In contrast, in similarly aged juvenile males, no changes occurred in LH levels or Kiss1 or NKB expression following castration, suggesting that gonadal hormone-independent mechanisms restrain kisspeptin/NKB-dependent activation of the male reproductive axis before puberty. Notably, adult mice of both sexes showed comparable rapid increases in Kiss1/NKB expression and LH secretion following gonadectomy, signifying that sex differences in the regulation of ARC Kiss1/NKB neurons are manifest only during peripubertal development. Our findings demonstrate that the mechanisms controlling pubertal activation of reproduction in mice are different between the sexes and suggest that gonadal hormone-independent central restraint on pubertal timing involves Kiss1/NKB neurons in the ARC.


Assuntos
Kisspeptinas/biossíntese , Kisspeptinas/genética , Neurocinina B/biossíntese , Neurocinina B/genética , Neurônios/fisiologia , Maturidade Sexual/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Interpretação Estatística de Dados , Feminino , Regulação da Expressão Gênica/genética , Hormônios Esteroides Gonadais/fisiologia , Hibridização In Situ , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orquiectomia , Ovariectomia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Caracteres Sexuais , Testosterona/sangue
12.
Endocr Rev ; 30(6): 713-43, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19770291

RESUMO

Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function.


Assuntos
Encéfalo/metabolismo , Reprodução , Proteínas Supressoras de Tumor/fisiologia , Animais , Peixes/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Kisspeptinas , Mamíferos/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Terminologia como Assunto , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo
13.
J Neurosci ; 29(38): 11859-66, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19776272

RESUMO

Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes but also the NKB receptor gene (NK3) and the Dyn receptor [the kappa opioid receptor (KOR)] gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol, as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knock-out mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Dinorfinas/genética , Estradiol/metabolismo , Feminino , Hibridização In Situ , Kisspeptinas , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Ovariectomia , Precursores de Proteínas/genética , RNA Mensageiro/metabolismo , Receptores da Neurocinina-3/agonistas , Receptores da Neurocinina-3/metabolismo , Receptores Opioides/agonistas , Receptores Opioides/genética , Receptores Opioides/metabolismo , Transdução de Sinais
14.
J Neurosci ; 29(29): 9390-5, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19625529

RESUMO

Kisspeptin is a product of the Kiss1 gene and is expressed in the forebrain. Neurons that express Kiss1 play a crucial role in the regulation of pituitary luteinizing hormone secretion and reproduction. These neurons are the direct targets for the action of estradiol-17beta (E(2)), which acts via the estrogen receptor alpha isoform (ER alpha) to regulate Kiss1 expression. In the arcuate nucleus (Arc), where the dynorphin gene (Dyn) is expressed in Kiss1 neurons, E(2) inhibits the expression of Kiss1 mRNA. However, E(2) induces the expression of Kiss1 in the anteroventral periventricular nucleus (AVPV). The mechanism for differential regulation of Kiss1 in the Arc and AVPV by E(2) is unknown. ER alpha signals through multiple pathways, which can be categorized as either classical, involving the estrogen response element (ERE), or nonclassical, involving ERE-independent mechanisms. To elucidate the molecular basis for the action of E(2) on Kiss1 and Dyn expression, we studied the effects of E(2) on Kiss1 and Dyn mRNAs in the brains of mice bearing targeted alterations in the ER alpha signaling pathways. We found that stimulation of Kiss1 expression by E(2) in the AVPV and inhibition of Dyn in the Arc required an ERE-dependent pathway, whereas the inhibition of Kiss1 expression by E(2) in the Arc involved ERE-independent mechanisms. Thus, distinct ER alpha signaling pathways can differentially regulate the expression of identical genes across different brain regions, and E(2) can act within the same neuron through divergent ER alpha signaling pathways to regulate different neurotransmitter genes.


Assuntos
Encéfalo/efeitos dos fármacos , Dinorfinas/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Proteínas/metabolismo , Animais , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Núcleos Anteriores do Tálamo/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Encéfalo/metabolismo , Dinorfinas/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Kisspeptinas , Hormônio Luteinizante/sangue , Camundongos , Camundongos Transgênicos , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
15.
Endocrinology ; 150(8): 3664-71, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19443569

RESUMO

The preovulatory GnRH/LH surge depends on the presence of estradiol (E(2)) and is gated by a circadian oscillator in the suprachiasmatic nucleus (SCN) that causes the surge to occur within a specific temporal window. Although the mechanisms by which the clock times the LH surge are unclear, evidence suggests that the SCN is linked to GnRH neurons through a multisynaptic pathway that includes neurons in the anteroventral periventricular nucleus (AVPV). Recently, Kiss1 neurons in the AVPV have been implicated in the surge mechanism, suggesting that they may integrate circadian and E(2) signals to generate the LH surge. We tested whether Kiss1 neurons display circadian patterns of regulation in synchrony with the temporal pattern of LH secretion. Mice housed in 14 h light, 10 h dark were ovariectomized, given E(2) capsules (or nothing), and transferred into constant darkness. Two days later, the mice were killed at various times of day and their LH and Kiss1 levels assessed. In E(2)-treated females, LH levels were low except during late subjective day (indicative of an LH surge). Similarly, AVPV Kiss1 expression and c-fos coexpression in Kiss1 neurons showed circadian patterns that peaked coincident with LH. These temporal changes in Kiss1 neurons occurred under steady-state E(2) and constant environmental conditions, suggesting that Kiss1 neurons are regulated by circadian signals. In the absence of E(2), animals displayed no circadian pattern in LH secretion or Kiss1 expression. Collectively, these findings suggest that the LH surge is controlled by AVPV Kiss1 neurons whose activity is gated by SCN signals in an E(2)-dependent manner.


Assuntos
Ritmo Circadiano/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hibridização In Situ , Kisspeptinas , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Ovariectomia , Núcleo Supraquiasmático/citologia
16.
Peptides ; 30(1): 4-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18644415

RESUMO

The cancer suppressor gene, KISS1, was initially described as having an important role in inhibiting cancer metastasis. Since then, KISS1 and its receptor, KISS1R, have been shown to play a key role in controlling the onset of puberty of reproductive physiology in the human and other species. Recent studies have also linked KISS1/kisspeptin/KISS1R to other processes, such as vasoconstriction, aging, adipocyte physiology, and perhaps as a molecular conduit linking metabolism and reproduction. This article highlights the history of KISS1/kisspeptin/KISS1R biology and proposes a consensus for nomenclature of the key molecules in this signaling pathway.


Assuntos
Receptores Acoplados a Proteínas G , Terminologia como Assunto , Proteínas Supressoras de Tumor , Animais , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Kisspeptinas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
17.
Am J Physiol Endocrinol Metab ; 295(3): E605-12, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18775887

RESUMO

Galanin-like peptide (GALP) is expressed in the arcuate nucleus and is implicated in the neuroendocrine regulation of metabolism and reproduction. To investigate the physiological significance of GALP, we generated and characterized a strain of mice with a genetically targeted deletion in the GALP gene [GALP knockout (KO) mice]. We report that GALP KO mice have a subtle, but notable, metabolic phenotype that becomes apparent during adaptation to changes in nutrition. GALP KO mice are indistinguishable from wild-type (WT) controls in virtually all aspects of growth, sexual development, body weight, food and water consumption, and motor behaviors, when they are allowed unlimited access to standard rodent chow. However, GALP KO mice have an altered response to changes in diet. 1) Male GALP KO mice consumed less food during refeeding after a fast than WT controls (P < 0.01). 2) GALP KO mice of both sexes gained less weight on a high-fat diet than WT controls (P < 0.01), despite both genotypes having consumed equal amounts of food. We conclude that although GALP signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, GALP may play a role in readjusting energy balance under changing nutritional circumstances.


Assuntos
Peptídeo Semelhante a Galanina/genética , Peptídeo Semelhante a Galanina/fisiologia , Metabolismo/genética , Metabolismo/fisiologia , Animais , Antimetabólitos/farmacologia , Desoxiglucose/farmacologia , Dieta , Gorduras na Dieta/farmacologia , Ingestão de Líquidos/genética , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Jejum/fisiologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Glucose/deficiência , Hibridização In Situ , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeo Y/metabolismo , Ovário/crescimento & desenvolvimento , Ovário/fisiologia , Fenótipo , Pró-Opiomelanocortina/metabolismo , Reprodução/fisiologia , Maturidade Sexual/genética , Maturidade Sexual/fisiologia , Testículo/crescimento & desenvolvimento , Testículo/fisiologia , Aumento de Peso/fisiologia
18.
Annu Rev Physiol ; 70: 213-38, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17988212

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH) reside in the basal forebrain and drive reproductive function in mammals. Understanding the circuitry that regulates GnRH neurons is fundamental to comprehending the neuroendocrine control of puberty and reproduction in the adult. This review focuses on a family of neuropeptides encoded by the Kiss1 gene, the kisspeptins, and their cognate receptor, GPR54, which have been implicated in the regulation of GnRH secretion. Kisspeptins are potent secretagogues for GnRH, and the Kiss1 gene is a target for regulation by gonadal steroids (e.g., estradiol and testosterone), metabolic factors (e.g., leptin), photoperiod, and season. Kiss1 neurons in the arcuate nucleus may regulate the negative feedback effect of gonadal steroids on GnRH and gonadotropin secretion in both sexes. The expression of Kiss1 in the anteroventral periventricular nucleus (AVPV) is sexually dimorphic, and Kiss1 neurons in the AVPV may participate in the generation of the preovulatory GnRH/luteinizing hormone (LH) surge in the female rodent. Kiss1 neurons have emerged as primary transducers of internal and environmental cues to regulate the neuroendocrine reproductive axis.


Assuntos
Sistemas Neurossecretores/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Reprodução/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Humanos , Kisspeptinas , Proteínas/fisiologia , Receptores de Kisspeptina-1
19.
J Neurosci ; 27(44): 12088-95, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17978050

RESUMO

The Kiss1 gene codes for kisspeptin, which binds to GPR54, a G-protein-coupled receptor. Kisspeptin and GPR54 are expressed in discrete regions of the forebrain, and they have been implicated in the neuroendocrine regulation of reproduction. Kiss1-expressing neurons are thought to regulate the secretion of gonadotropin-releasing hormone (GnRH) and thus coordinate the estrous cycle in rodents; however, the precise role of kisspeptin-GPR54 signaling in the regulation of gonadotropin secretion is unknown. In this study, we used female mice with deletions in the GPR54 gene [GPR54 knock-outs (KOs)] to test the hypothesis that kisspeptin-GPR54 signaling provides the drive necessary for tonic GnRH/luteinizing hormone (LH) release. We predicted that tonic GnRH/LH secretion would be disrupted in GPR54 KOs and that such animals would be incapable of showing a compensatory rise in LH secretion after ovariectomy. As predicted, we found that GPR54 KO mice do not exhibit a postovariectomy rise in LH, suggesting that tonic GnRH secretion is disrupted in the absence of kisspeptin-GPR54 signaling. We also postulated that kisspeptin-GPR54 signaling is critical for the generation of the estradiol (E)-induced GnRH/LH surge and thus E should be incapable of inducing an LH surge in the absence of GPR54. However, we found that E induced Fos expression in GnRH neurons and produced a GnRH-dependent LH surge in GPR54 KOs. Thus, in mice, kisspeptin-GPR54 signaling is required for the tonic stimulation of GnRH/LH secretion but is not required for generating the E-induced GnRH/LH surge.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/genética , Kisspeptinas , Hormônio Luteinizante/sangue , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Oligopeptídeos/farmacologia , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Ovariectomia/métodos , Proteínas/genética , Radioimunoensaio/métodos , Receptores Acoplados a Proteínas G/deficiência , Receptores de Kisspeptina-1
20.
Trends Neurosci ; 30(10): 504-11, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17904653

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH) drive the reproductive axis, but the molecular and cellular mechanisms by which hormonal and environmental signals regulate GnRH secretion remain poorly understood. Kisspeptins are products of the Kiss1 gene, and the interaction of kisspeptin and its receptor GPR54 plays a crucial role in governing the onset of puberty and adult reproductive function. This review discusses the latest ideas about kisspeptin-GPR54 signaling in the neuroendocrine regulation of reproduction, with special emphasis on the role of Kiss1 and kisspeptin in the negative and positive feedback control of gonadotropin secretion by sex steroids, timing of puberty onset, sexual differentiation of the brain and photoperiodic regulation of seasonal reproduction.


Assuntos
Sistemas Neurossecretores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Humanos , Kisspeptinas , Receptores de Kisspeptina-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...