Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263853

RESUMO

Pediatric COVID-19 (pCOVID-19) is rarely severe, however a minority of SARS-CoV-2-infected children may develop MIS-C, a multisystem inflammatory syndrome with significant morbidity. In this longitudinal multi-institutional study, we used multi-omics to identify novel time- and treatment-related immunopathological signatures in children with COVID-19 (n=105) and MIS-C (n=76). pCOVID-19 was characterized by enhanced type I IFN responses, and MIS-C by type II IFN- and NF-{kappa}B dependent responses, matrisome activation, and increased levels of Spike protein. Reduced levels of IL-33 in pCOVID-19, and of CCL22 in MIS-C suggested suppression of Th2 responses. Expansion of TRBV11-2 T-cell clonotypes in MIS-C was associated with inflammation and signatures of T-cell activation, and was reversed by glucocorticoids. The association of MIS-C with the combination of HLA A*02, B*35, C*04 alleles suggests genetic susceptibility. MIS-C B cells showed higher mutation load. Use of IVIG was identified as a confounding factor in the interpretation of autoantibody levels.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-455984

RESUMO

BackgroundCharacterizing the longevity and quality of cellular immune responses to SARS-CoV-2 is critical to understanding immunologic approaches to protection against COVID-19. Prior studies suggest SARS-CoV-2-specific T cells are present in peripheral blood 10 months after infection. Further analysis of the function, durability, and diversity of the cellular response long after natural infection, over a wider range of ages and disease phenotypes, is needed to further identify preventative and therapeutic interventions. MethodsWe identified participants in our multi-site longitudinal, prospective cohort study 12-months post SARS-CoV-2 infection representing a range of disease severity. We investigated the function, phenotypes, and frequency of T cells specific for SARS-CoV-2 using intracellular cytokine staining and spectral flow cytometry. In parallel, the magnitude of SARS-CoV-2-specific antibodies was compared. ResultsSARS-CoV-2-specific antibodies and T cells were detected at 12-months post-infection. Severity of acute illness was associated with higher frequencies of SARS-CoV-2-specific CD4 T cells and antibodies at 12-months. In contrast, polyfunctional and cytotoxic T cells responsive to SARS-CoV-2 were identified in participants over a wide spectrum of disease severity. ConclusionsOur data show that SARS-CoV-2 infection induces polyfunctional memory T cells detectable at 12-months post-infection, with higher frequency noted in those who originally experienced severe disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...