Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 57(16): 10090-10099, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30066565

RESUMO

Bi2Te3 is a well-studied material because of its thermoelectric properties and, recently, has also been studied as a topological insulator. However, it is only one of several compounds in the Bi-Te system. This work presents a study of the physical vapor transport growth of Bi-Te material focused on determining the growth conditions required to selectively obtain a desired phase of the Bi-Te system, i.e., Bi2Te3, BiTe, and Bi4Te3. Epitaxial films of these compounds were prepared on sapphire and silicon substrates. The results were verified by X-ray diffraction, Raman spectroscopy, and Rutherford backscattering spectrometry.

2.
Nanoscale Res Lett ; 7(1): 409, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22823959

RESUMO

Isothermal close space sublimation, a simple and low-cost physical vapour transport technique, was used to infiltrate ZnTe and CdSe semiconductors in porous silicon. The structure of the embedded materials was determined by X-ray diffraction analysis while Rutherford backscattering spectra allowed determining the composition profiles of the samples. In both cases, a constant composition of the II-VI semiconductors throughout the porous layer down to the substrate was found. Resonance Raman scattering of the ZnTe samples indicates that this semiconductor grows in nanostructured form inside the pores. Results presented in this paper suggest that isothermal close space sublimation is a promising technique for the conformal growth of II-VI semiconductors in porous silicon.

3.
Nanoscale Res Lett ; 7(1): 396, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22799489

RESUMO

The localized irradiation of Si allows a precise patterning at the microscale of nanostructured materials such as porous silicon (PS). PS patterns with precisely defined geometries can be fabricated using ion stopping masks. The nanoscale textured micropatterns were used to explore their influence as microenvironments for human mesenchymal stem cells (hMSCs). In fact, the change of photoluminescence emission from PS upon aging in physiological solution suggests the intense formation of silanol surface groups, which may play a relevant role in ulterior cell adhesion. The experimental results show that hMSCs are sensitive to the surface micropatterns. In this regard, preliminary ß-catenin labeling studies reveal the formation of cell to cell interaction structures, while microtubule orientation is strongly influenced by the selective adhesion conditions. Relevantly, Ki-67 assays support a proliferative state of hMSCs on such nanostructured micropatterns comparable to that of standard cell culture platforms, which reinforce the candidature of porous silicon micropatterns to become a conditioning structure for in vitro culture of HMSCs.

4.
Int J Nanomedicine ; 7: 623-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22346355

RESUMO

The engineering of surface patterns is a powerful tool for analyzing cellular communication factors involved in the processes of adhesion, migration, and expansion, which can have a notable impact on therapeutic applications including tissue engineering. In this regard, the main objective of this research was to fabricate patterned and textured surfaces at micron- and nanoscale levels, respectively, with very different chemical and topographic characteristics to control cell-substrate interactions. For this task, one-dimensional (1-D) and two-dimensional (2-D) patterns combining silicon and nanostructured porous silicon were engineered by ion beam irradiation and subsequent electrochemical etch. The experimental results show that under the influence of chemical and morphological stimuli, human mesenchymal stem cells polarize and move directionally toward or away from the particular stimulus. Furthermore, a computational model was developed aiming at understanding cell behavior by reproducing the surface distribution and migration of human mesenchymal stem cells observed experimentally.


Assuntos
Adesão Celular/fisiologia , Técnicas de Cultura de Células/instrumentação , Movimento Celular/fisiologia , Nanoestruturas/ultraestrutura , Silício/química , Simulação por Computador , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência , Nanotecnologia , Porosidade , Propriedades de Superfície , Engenharia Tecidual/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...