Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(9): 2622-2638, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37148430

RESUMO

The large-scale production of clinical-grade lentiviral vectors (LVs) for gene therapy applications is a remaining challenge. The use of adherent cell lines and methods like transient transfection are cost-intensive and hamper process scalability as well as reproducibility. This study describes the use of two suspension-adapted stable packaging cell lines, called GPRGs and GPRTGs, for the development of a scalable and serum-free LV production process. Both stable packaging cell lines are based on an inducible Tet-off system, thus requiring doxycycline removal for initiation of the virus production. Therefore, we compared different methods for doxycycline removal and inoculated three independent 5 L bioreactors using a scalable induction method by dilution, an acoustic cell washer and manual centrifugation. The bioreactors were inoculated with a stable producer cell line encoding for a LV carrying a clinically relevant gene. LV production was performed in perfusion mode using a cell retention device based on acoustic wave separation. Comparable cell-specific productivities were obtained with all three methods and cumulative functional yields up to 6.36 × 1011 transducing units per bioreactor were generated in a 234-h long process, demonstrating the usability of stable Tet-off cell lines for an easily scalable suspension process. Remarkably, cell viabilities >90% were maintained at high cell densities without compromising productivity throughout the whole process, allowing to further extend the process time. Given its low effects of toxicity during virus production, the presented cell lines are excellent candidates to develop a fully continuous LV production process to overcome the existing bottlenecks in LV manufacturing.


Assuntos
Vetores Genéticos , Lentivirus , Lentivirus/genética , Doxiciclina/farmacologia , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Linhagem Celular , Perfusão
2.
Methods Enzymol ; 616: 133-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30691641

RESUMO

Type I CRISPR-Cas systems utilize small CRISPR RNA (crRNA) molecules to scan DNA strands for target regions. Different crRNAs are bound by several CRISPR-associated (Cas) protein subunits that form the stable ribonucleoprotein complex Cascade. The Cascade-mediated DNA surveillance process requires a sufficient degree of base-complementarity between crRNA and target sequences and relies on the recognition of small DNA motifs, termed protospacer adjacent motifs. Recently, super-resolution microscopy and single-particle tracking methods have been developed to follow individual protein complexes in live cells. Here, we described how this technology can be adapted to visualize the DNA scanning process of Cascade assemblies in Escherichia coli cells. The activity of recombinant Type I-Fv Cascade complexes of Shewanella putrefaciens CN-32 serves as a model system that facilitates comparative studies for many of the diverse CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas , DNA/genética , Escherichia coli/genética , Proteínas Associadas a CRISPR/genética , Clonagem Molecular/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Escherichia coli/genética , Microscopia de Fluorescência/métodos , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , Shewanella putrefaciens/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...