Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Athl Train ; 54(7): 801-807, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31343261

RESUMO

CONTEXT: Lateral ankle sprains (LASs) result in short- and long-term adaptations in the sensorimotor system that are thought to contribute to the development of chronic ankle instability and posttraumatic ankle osteoarthritis. Debate continues as to the appropriateness of rapid return to sport after LASs given the prevalence of long-term consequences. OBJECTIVE: To examine the short- and long-term effects of prolonged rest, as a model of immobilization, on dynamic balance and gait outcomes after a severe LAS in a mouse model. DESIGN: Controlled laboratory study. SETTING: Research laboratory. INTERVENTION(S): At 7 weeks of age, 18 male mice (CBA/J) had their right anterior talofibular and calcaneofibular ligaments transected. Mice were then randomized to 1 of 3 groups representing when access to a running wheel postsurgery was gained: at 3 days, 1 week, and 2 weeks. MAIN OUTCOME MEASURE(S): Dynamic balance and spatial gait characteristics were quantified before surgery (baseline) and at 3 days and 1, 2, 4, 6, 12, 18, 24, 30, 36, 42, 48, and 54 weeks postinjury. RESULTS: Relative to prolonged rest, resting for only 3 days resulted in worse dynamic balance during the later assessment points (42-54 weeks postinjury, P < .01). Mice that underwent a prolonged rest period of 2 weeks crossed the balance beam faster than the group that rested for only 3 days when averaged across all time points (P < .012). Spatial gait characteristics did not differ among the groups (P > .05). CONCLUSIONS: Relative to 3 days of rest, prolonged rest (1 and 2 weeks) after a severe LAS in mice positively affected balance. The apparent benefit of prolonged rest was noted on both dynamic-balance outcomes and performance. Stride length was not altered by the duration of rest after a surgically induced severe LAS in mice. Future research is needed to determine if these results translate to a human model.


Assuntos
Traumatismos do Tornozelo , Articulação do Tornozelo , Marcha , Adaptação Fisiológica , Animais , Tornozelo , Traumatismos do Tornozelo/fisiopatologia , Traumatismos do Tornozelo/reabilitação , Articulação do Tornozelo/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Instabilidade Articular , Ligamentos Laterais do Tornozelo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Equilíbrio Postural , Descanso , Corrida
3.
Mol Neurodegener ; 11(1): 53, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27480121

RESUMO

BACKGROUND: Disease progression in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), as one of its animal models, is characterized by demyelination and neuronal damage in white and gray matter structures, including the hippocampus. It is thought that dysfunction of the hippocampus, a primary locus of learning and memory consolidation, may contribute to cognitive impairment in MS patients. Previously, we reported an increased generation of hippocampal neuronal progenitors in the acute stage of EAE, whereas the microenvironmental signals triggering this process remained uninvestigated. RESULTS: In the present study, we used the Wnt signaling reporter mouse Axin2(LacZ), to elucidate the molecular mechanisms underlying the activation of the hippocampal neurogenic niche upon autoimmune neuroinflammation. Histological and enzymatic examinations of ß-gal during the disease course of EAE, allowed us to survey hippocampal Wnt/ß-catenin activity, one of the key signaling pathways of adult neurogenesis. We found that Wnt signaling is transiently upregulated in the acute stage of disease, consistent with a timely induction of canonical Wnt ligands. The enhancement of signaling coincided with hippocampal neuronal damage and local expression of immune cytokines such as TNFα and IFNγ, implicating the role of the inflammatory milieu in activation of the Wnt/ß-catenin pathway. Supporting this finding, we show that transient exposure to pro-inflammatory cytokine TNFα triggers Wnt signaling in hippocampal organotypic slice cultures. Importantly, inflammation-mediated activation of the Wnt/ß-catenin pathway was associated with enhanced neurogenesis in vitro and in vivo, indicating its potential role in hippocampal tissue regeneration and repair. CONCLUSIONS: This study raises the possibility that enhancement of Wnt signaling may support neurogenic processes to cope with neuronal deficits upon immune-mediated neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Feminino , Camundongos , Esclerose Múltipla/metabolismo , beta Catenina/metabolismo
4.
Environ Health Perspect ; 117(7): 1131-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19654924

RESUMO

BACKGROUND: Developmental neurotoxicity (DNT) of environmental chemicals is a serious threat to human health. Current DNT testing guidelines propose investigations in rodents, which require large numbers of animals. With regard to the "3 Rs" (reduction, replacement, and refinement) of animal testing and the European regulation of chemicals [Registration, Evaluation, and Authorisation of Chemicals (REACH)], alternative testing strategies are needed in order to refine and reduce animal experiments and allow faster and less expensive screening. OBJECTIVES: The goal of this study was to establish a three-dimensional test system for DNT screening based on human fetal brain cells. METHODS: We established assays suitable for detecting disturbances in basic processes of brain development by employing human neural progenitor cells (hNPCs), which grow as neurospheres. Furthermore, we assessed effects of mercury and oxidative stress on these cells. RESULTS: We found that human neurospheres imitate proliferation, differentiation, and migration in vitro. Exposure to the proapoptotic agent staurosporine further suggests that human neurospheres possess functioning apoptosis machinery. The developmental neurotoxicants methylmercury chloride and mercury chloride decreased migration distance and number of neuronal-like cells in differentiated hNPCs. Furthermore, hNPCs undergo caspase-independent apoptosis when exposed toward high amounts of oxidative stress. CONCLUSIONS: Human neurospheres are likely to imitate basic processes of brain development, and these processes can be modulated by developmental neurotoxicants. Thus, this three-dimensional cell system is a promising approach for DNT testing.


Assuntos
Neurogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feto/citologia , Feto/embriologia , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade
5.
Proc Natl Acad Sci U S A ; 104(21): 8851-6, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17502624

RESUMO

UVB radiation-induced signaling in mammalian cells involves two major pathways: one that is initiated through the generation of DNA photoproducts in the nucleus and a second one that occurs independently of DNA damage and is characterized by cell surface receptor activation. The chromophore for the latter one has been unknown. Here, we report that the UVB response involves tryptophan as a chromophore. We show that through the intracellular generation of photoproducts, such as the arylhydrocarbon receptor (AhR) ligand 6-formylindolo[3,2-b]carbazole, signaling events are initiated, which are transferred to the nucleus and the cell membrane via activation of the cytoplasmatic AhR. Specifically, AhR activation by UVB leads to (i) transcriptional induction of cytochrome P450 1A1 and (ii) EGF receptor internalization with activation of the EGF receptor downstream target ERK1/2 and subsequent induction of cyclooxygenase-2. The role of the AhR in the UVB stress response was confirmed in vivo by studies employing AhR KO mice.


Assuntos
Citoplasma/metabolismo , Citoplasma/efeitos da radiação , Receptores de Hidrocarboneto Arílico/metabolismo , Raios Ultravioleta , Transporte Ativo do Núcleo Celular , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Carbazóis/química , Carbazóis/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Humanos , Indóis/química , Indóis/metabolismo , Camundongos , Camundongos Knockout , Estrutura Molecular , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/genética , Triptofano/metabolismo
6.
Toxicol Appl Pharmacol ; 221(1): 57-67, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17445854

RESUMO

Besides differentiation and apoptosis, cell migration is a basic process in brain development in which neural cells migrate several centimeters within the developing brain before reaching their proper positions and forming the right connections. For identifying signaling events that control neural migration and are therefore potential targets of chemicals to disturb normal brain development, we developed a human neurosphere-based migration assay based on normal human neural progenitor (NHNP) cells, in which the distance is measured that cells wander over time. Applying this assay, we investigated the role of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the regulation of NHNP cell migration. Exposure to model substances like ethanol or phorbol 12-myristate 13-acetate (PMA) revealed a correlation between ERK1/2 activation and cell migration. The participation of phospho-(P-) ERK1/2 was confirmed by exposure of the cells to the MEK inhibitor PD98059, which directly prohibits ERK1/2 phosphorylation and inhibited cell migration. We identified protein kinase C (PKC) and epidermal growth factor receptor (EGFR) as upstream signaling kinases governing ERK1/2 activation, thereby controlling NHNP cell migration. Additionally, treatments with src kinase inhibitors led to a diminished cell migration without affecting ERK1/2 phosphorylation. Based on these results, we postulate that migration of NHNP cells is controlled via ERK1/2-dependent and -independent pathways.


Assuntos
Movimento Celular/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Flavonoides/farmacologia , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Compostos de Metilmercúrio/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Pirimidinas/farmacologia , Quinazolinas , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Sulfonamidas/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Tirfostinas/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
7.
Environ Health Perspect ; 113(7): 871-6, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16002375

RESUMO

Polychlorinated biphenyls (PCBs) are ubiquitous environmental chemicals that accumulate in adipose tissues over the food chain. Epidemiologic studies have indicated that PCBs influence brain development. Children who are exposed to PCBs during development suffer from neuropsychologic deficits such as a lower full-scale IQ (intelligence quotient), reduced visual recognition memory, and attention and motor deficits. The mechanisms leading to these effects are not fully understood. It has been speculated that PCBs may affect brain development by interfering with thyroid hormone (TH) signaling. Because most of the data are from animal studies, we established a model using primary normal human neural progenitor (NHNP) cells to determine if PCBs interfere with TH-dependent neural differentiation. NHNP cells differentiate into neurons, astrocytes, and oligodendrocytes in culture, and they express a variety of drug metabolism enzymes and nuclear receptors. Like triiodothyronine (T3), treatment with the mono-ortho-substituted PCB-118 (2,3',4,4 ,5-pentachlorobiphenyl; 0.01-1 microM) leads to a dose-dependent increase of oligodendrocyte formation. This effect was congener specific, because the coplanar PCB-126 (3,3',4,4 ,5-pentachlorobiphenyl) had no effect. Similar to the T3 response, the PCB-mediated effect on oligodendrocyte formation was blocked by retinoic acid and the thyroid hormone receptor antagonist NH-3. These results suggest that PCB-118 mimics T3 action via the TH pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Bifenilos Policlorados/toxicidade , Receptores dos Hormônios Tireóideos/metabolismo , Células-Tronco/efeitos dos fármacos , Acetatos/farmacologia , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Benzo(a)pireno/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Fenoxiacetatos , Receptores dos Hormônios Tireóideos/antagonistas & inibidores , Receptores dos Hormônios Tireóideos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Tretinoína/farmacologia , Tri-Iodotironina/farmacologia
8.
J Phys Chem A ; 109(7): 1299-307, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16833444

RESUMO

Spectra of the hydrated electron in pressurized light and heavy water at temperatures up to and beyond the critical temperature are reported, for wavelengths between 0.4 and 1.7 microm. In agreement with previous work, spectra can be approximately represented by a Gaussian function on the low-energy side, and a Lorentzian function on the high-energy side in subcritical water, but deviations from this form are very clear above 200 degrees C. The spectrum shifts strongly to the red as temperature rises. At supercritical temperatures, the spectrum shifts slightly to the red as density decreases, and the Gaussian-Lorentzian form is a very poor description. Application of spectral moment theory allows one to make an estimate of the average size of the electron wave function and of its kinetic energy. It appears that for water densities below about 0.6 g/cc, and down to below 0.1 g/cc, the average radius of gyration for the electron remains constant at around 3.4 angstroms, and its absorption maximum is near 0.9 eV. For higher densities, the electron is squeezed into a smaller cavity and the spectrum is shifted to the blue. The enthalpy and free energy of electron hydration are derived as a function of temperature on the basis of existing equilibrium data and absolute proton hydration energies derived from the cluster-based common point method. In a discussion, we compare the effective "size" of the hydrated electron derived from both methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...