Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(17): 3838-3846.e5, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35841890

RESUMO

A key aim in biology is to identify which genetic changes contributed to the evolution of form through time. Apical dominance, the inhibitory effect exerted by shoot apices on the initiation or outgrowth of distant lateral buds, is a major regulatory mechanism of plant form.1 Nearly a century of studies in the sporophyte of flowering plants have established the phytohormone auxin as a front-runner in the search for key factors controlling apical dominance,2,3 identifying critical roles for long-range polar auxin transport and local auxin biosynthesis in modulating shoot branching.4-10 A capacity for lateral branching evolved by convergence in the gametophytic shoot of mosses and primed its diversification;11 however, polar auxin transport is relatively unimportant in this developmental process,12 the contribution of auxin biosynthesis genes has not been assessed, and more generally, the extent of conservation in apical dominance regulation within the land plants remains largely unknown. To fill this knowledge gap, we sought to identify genetic determinants of apical dominance in the moss Physcomitrium patens. Here, we show that leafy shoot apex decapitation releases apical dominance through massive and rapid transcriptional reprogramming of auxin-responsive genes and altering auxin biosynthesis gene activity. We pinpoint a subset of P. patens TRYPTOPHAN AMINO-TRANSFERASE (TAR) and YUCCA FLAVIN MONOOXYGENASE-LIKE (YUC) auxin biosynthesis genes expressed in the main and lateral shoot apices and show that they are essential for coordinating branch initiation and outgrowth. Our results demonstrate that local auxin biosynthesis acts as a pivotal regulator of apical dominance in moss and constitutes a shared mechanism underpinning shoot architecture control in land plants.


Assuntos
Briófitas , Bryopsida , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/genética
2.
Curr Biol ; 24(19): 2335-42, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25264254

RESUMO

To control morphogenesis, molecular regulatory networks have to interfere with the mechanical properties of the individual cells of developing organs and tissues, but how this is achieved is not well known. We study this issue here in the shoot meristem of higher plants, a group of undifferentiated cells where complex changes in growth rates and directions lead to the continuous formation of new organs. Here, we show that the plant hormone auxin plays an important role in this process via a dual, local effect on the extracellular matrix, the cell wall, which determines cell shape. Our study reveals that auxin not only causes a limited reduction in wall stiffness but also directly interferes with wall anisotropy via the regulation of cortical microtubule dynamics. We further show that to induce growth isotropy and organ outgrowth, auxin somehow interferes with the cortical microtubule-ordering activity of a network of proteins, including AUXIN BINDING PROTEIN 1 and KATANIN 1. Numerical simulations further indicate that the induced isotropy is sufficient to amplify the effects of the relatively minor changes in wall stiffness to promote organogenesis and the establishment of new growth axes in a robust manner.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Parede Celular/metabolismo , Katanina , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...