Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38828818

RESUMO

Here, we report the frequency-dependent spectrum of ice Ih in the range of 0.2-2 THz. We confirm the presence of a feature that blue-shifts from around 1.55-1.65 THz with a decreasing temperature from 260 to 160 K. There is also a change in the trend of the refractive index of ice corresponding to a dispersion, which is also around 1.6 THz. The features are reproduced in data acquired with three commercial terahertz time-domain spectrometers. Computer-simulated spectra assign the feature to lattice translations perpendicular to the 110 and 1̄10 planes of the ice Ih crystal. The feature's existence should be recognized in the terahertz measurements of frozen aqueous solution samples to avoid false interpretations.

2.
Plant Cell Environ ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757412

RESUMO

Salinity tolerance requires coordinated responses encompassing salt exclusion in roots and tissue/cellular compartmentation of salt in leaves. We investigated the possible control points for salt ions transport in roots and tissue tolerance to Na+ and Cl- in leaves of two contrasting mungbean genotypes, salt-tolerant Jade AU and salt-sensitive BARI Mung-6, grown in nonsaline and saline (75 mM NaCl) soil. Cryo-SEM X-ray microanalysis was used to determine concentrations of Na, Cl, K, Ca, Mg, P, and S in various cell types in roots related to the development of apoplastic barriers, and in leaves related to photosynthetic performance. Jade AU exhibited superior salt exclusion by accumulating higher [Na] in the inner cortex, endodermis, and pericycle with reduced [Na] in xylem vessels and accumulating [Cl] in cortical cell vacuoles compared to BARI Mung-6. Jade AU maintained higher [K] in root cells than BARI Mung-6. In leaves, Jade AU maintained lower [Na] and [Cl] in chloroplasts and preferentially accumulated [K] in mesophyll cells than BARI Mung-6, resulting in higher photosynthetic efficiency. Salinity tolerance in Jade AU was associated with shoot Na and Cl exclusion, effective regulation of Na and Cl accumulation in chloroplasts, and maintenance of high K in root and leaf mesophyll cells.

3.
J R Soc Interface ; 21(212): 20230597, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471532

RESUMO

The sponge-like biomineralized calcite materials found in echinoderm skeletons are of interest in terms of both structure formation and biological function. Despite their crystalline atomic structure, they exhibit curved interfaces that have been related to known triply periodic minimal surfaces. Here, we investigate the endoskeleton of the sea urchin Cidaris rugosa that has long been known to form a microstructure related to the Primitive surface. Using X-ray tomography, we find that the endoskeleton is organized as a composite material consisting of domains of bicontinuous microstructures with different structural properties. We describe, for the first time, the co-occurrence of ordered single Primitive and single Diamond structures and of a disordered structure within a single skeletal plate. We show that these structures can be distinguished by structural properties including solid volume fraction, trabeculae width and, to a lesser extent, interface area and mean curvature. In doing so, we present a robust method that extracts interface areas and curvature integrals from voxelized datasets using the Steiner polynomial for parallel body volumes. We discuss these very large-scale bicontinuous structures in the context of their function, formation and evolution.


Assuntos
Carbonato de Cálcio , Ouriços-do-Mar , Animais , Carbonato de Cálcio/química
4.
Parasitol Res ; 122(12): 2891-2905, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776335

RESUMO

Cryptosporidium is a major cause of diarrhoeal disease and mortality in young children in resource-poor countries, for which no vaccines or adequate therapeutic options are available. Infection in humans is primarily caused by two species: C. hominis and C. parvum. Despite C. hominis being the dominant species infecting humans in most countries, very little is known about its growth characteristics and life cycle in vitro, given that the majority of our knowledge of the in vitro development of Cryptosporidium has been based on C. parvum. In the present study, the growth and development of two C. parvum isolates (subtypes Iowa-IIaA17G2R1 and IIaA18G3R1) and one C. hominis isolate (subtype IdA15G1) in HCT-8 cells were examined and compared at 24 h and 48 h using morphological data acquired with scanning electron microscopy. Our data indicated no significant differences in the proportion of meronts or merozoites between species or subtypes at either time-point. Sexual development was observed at the 48-h time-point across both species through observations of both microgamonts and macrogamonts, with a higher frequency of macrogamont observations in C. hominis (IdA15G1) cultures at 48-h post-infection compared to both C. parvum subtypes. This corresponded to differences in the proportion of trophozoites observed at the same time point. No differences in proportion of microgamonts were observed between the three subtypes, which were rarely observed across all cultures. In summary, our data indicate that asexual development of C. hominis is similar to that of C. parvum, while sexual development is accelerated in C. hominis. This study provides new insights into differences in the in vitro growth characteristics of C. hominis when compared to C. parvum, which will facilitate our understanding of the sexual development of both species.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criança , Animais , Humanos , Pré-Escolar , Iowa , Estágios do Ciclo de Vida
5.
Trends Parasitol ; 39(8): 668-681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302958

RESUMO

To best understand parasite, host, and vector morphologies, host-parasite interactions, and to develop new drug and vaccine targets, structural data should, ideally, be obtained and visualised in three dimensions (3D). Recently, there has been a significant uptake of available 3D volume microscopy techniques that allow collection of data across centimetre (cm) to Angstrom (Å) scales by utilising light, X-ray, electron, and ion sources. Here, we present and discuss microscopy tools available for the collection of 3D structural data, focussing on electron microscopy-based techniques. We highlight their strengths and limitations, such that parasitologists can identify techniques best suited to answer their research questions. Additionally, we review the importance of volume microscopy to the advancement of the field of parasitology.


Assuntos
Microscopia , Parasitos , Animais , Microscopia/métodos , Interações Hospedeiro-Parasita
6.
Nat Microbiol ; 8(3): 510-521, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759754

RESUMO

Behaviours such as chemotaxis can facilitate metabolic exchanges between phytoplankton and heterotrophic bacteria, which ultimately regulate oceanic productivity and biogeochemistry. However, numerically dominant picophytoplankton have been considered too small to be detected by chemotactic bacteria, implying that cell-cell interactions might not be possible between some of the most abundant organisms in the ocean. Here we examined how bacterial behaviour influences metabolic exchanges at the single-cell level between the ubiquitous picophytoplankton Synechococcus and the heterotrophic bacterium Marinobacter adhaerens, using bacterial mutants deficient in motility and chemotaxis. Stable-isotope tracking revealed that chemotaxis increased nitrogen and carbon uptake of both partners by up to 4.4-fold. A mathematical model following thousands of cells confirmed that short periods of exposure to small but nutrient-rich microenvironments surrounding Synechococcus cells provide a considerable competitive advantage to chemotactic bacteria. These findings reveal that transient interactions mediated by chemotaxis can underpin metabolic relationships among the ocean's most abundant microorganisms.


Assuntos
Quimiotaxia , Synechococcus , Oceanos e Mares , Processos Heterotróficos/fisiologia , Synechococcus/genética , Fitoplâncton/genética , Fitoplâncton/metabolismo
7.
Int Dent J ; 73(3): 354-361, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36754776

RESUMO

OBJECTIVES: This study aimed to synthesise a drug-delivery system based on a porous polymer hydrogel, with antimicrobial properties against Porphyromonas gingivalis and potential to be used in tissue regeneration. MATERIAL AND METHODS: 2-Hydroxyethyl methacrylate monomers were polymerised using thermal and photoactivation in the presence of silver nitrate (AgNO3) and/or chlorhexidine digluconate. Poly-2-hydroxyethyl methacrylate (pHEMA) hydrogels containing silver nanoparticles (AgNPs) and/or 0.12% chlorhexidine (CHX) were produced and characterised using cryo-SEM and confocal microscopy. Hydrogel degradation and leaching of AgNP were tested for 1.5 months. The antimicrobial properties were tested against P. gingivalis using broth culture system and disk diffusion tests. RESULTS: Our methodology manufactured porous polymeric hydrogels doped with AgNPs and CHX. Hydrogels showed a successful delivery of CHX and sustainable release of AgNPs in a steady hydrogel degradation rate determined based on the weight loss of samples. Hydrogels with AgNPs or CHX had a significant antimicrobial effect against P. gingivalis, with CHX-hydrogels exhibiting a stronger effect than AgNP-hydrogels in the short-term assessment. AgNP-CHX hydrogels showed a compounded antimicrobial effect, whereas control hydrogels containing neither AgNPs nor CHX had no influence on bacterial growth (P < .05). CONCLUSIONS: The dual-cured pHEMA hydrogel loaded with antimicrobial agents proved to be an efficient drug-delivery system against periodontopathogens, with the potential to be used as a scaffold for tissue regeneration.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Doenças Periodontais , Humanos , Hidrogéis , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Poli-Hidroxietil Metacrilato , Prata/farmacologia , Prata/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Doenças Periodontais/tratamento farmacológico
8.
J Exp Bot ; 74(6): 1974-1989, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575916

RESUMO

Although significant intraspecific variation in photosynthetic phosphorus (P) use efficiency (PPUE) has been shown in numerous species, we still know little about the biochemical basis for differences in PPUE among genotypes within a species. Here, we grew two high PPUE and two low PPUE chickpea (Cicer arietinum) genotypes with low P supply in a glasshouse to compare their photosynthesis-related traits, total foliar P concentration ([P]) and chemical P fractions (i.e. inorganic P (Pi), metabolite P, lipid P, nucleic acid P, and residual P). Foliar cell-specific nutrient concentrations including P were characterized using elemental X-ray microanalysis. Genotypes with high PPUE showed lower total foliar [P] without slower photosynthetic rates. No consistent differences in cellular [P] between the epidermis and mesophyll cells occurred across the four genotypes. In contrast, high PPUE was associated with lower allocation to Pi and metabolite P, with PPUE being negatively correlated with the percentage of these two fractions. Furthermore, a lower allocation to Pi and metabolite P was correlated with a greater allocation to nucleic acid P, but not to lipid P. Collectively, our results suggest that a different allocation to foliar P fractions, rather than preferential P allocation to specific leaf tissues, underlies the contrasting PPUE among chickpea genotypes.


Assuntos
Cicer , Fósforo , Fósforo/metabolismo , Cicer/genética , Folhas de Planta/metabolismo , Fotossíntese , Genótipo , Lipídeos/análise
9.
Front Plant Sci ; 13: 1036258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570951

RESUMO

Introduction: Biological N2 fixation in feather-mosses is one of the largest inputs of new nitrogen (N) to boreal forest ecosystems; however, revealing the fate of newly fixed N within the bryosphere (i.e. bryophytes and their associated organisms) remains uncertain. Methods: Herein, we combined 15N tracers, high resolution secondary ion mass-spectrometry (NanoSIMS) and a molecular survey of bacterial, fungal and diazotrophic communities, to determine the origin and transfer pathways of newly fixed N2 within feather-moss (Pleurozium schreberi) and its associated microbiome. Results: NanoSIMS images reveal that newly fixed N2, derived from cyanobacteria, is incorporated into moss tissues and associated bacteria, fungi and micro-algae. Discussion: These images demonstrate that previous assumptions that newly fixed N2 is sequestered into moss tissue and only released by decomposition are not correct. We provide the first empirical evidence of new pathways for N2 fixed in feather-mosses to enter the boreal forest ecosystem (i.e. through its microbiome) and discuss the implications for wider ecosystem function.

10.
Anal Chem ; 94(40): 13889-13896, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36189785

RESUMO

Subcellular partitioning of therapeutic agents is highly relevant to their interactions with target molecules and drug efficacy, but studying subcellular partitioning is an enormous challenge. Here, we describe the application of nanoscale secondary ion mass spectrometry (NanoSIMS) analysis to define the subcellular pharmacokinetics of a cytotoxic chemotherapy drug, arsenic trioxide (ATO). We reasoned that defining the partitioning of ATO would yield valuable insights into the mechanisms underlying ATO efficacy. NanoSIMS imaging made it possible to define the intracellular fate of ATO in a label-free manner─and with high resolution and high sensitivity. Our studies of ATO-treated cells revealed that arsenic accumulates in the nucleolus. After prolonged ATO exposure, ∼40 nm arsenic- and sulfur-rich protein aggregates appeared in the cell nucleolus, nucleus, and membrane-free compartments in the cytoplasm, and our studies suggested that the partitioning of nanoscale aggregates could be relevant to cell survival. All-trans retinoic acid increased intracellular ATO levels and accelerated the nanoscale aggregate formation in the nucleolus. This study yielded fresh insights into the subcellular pharmacokinetics of an important cancer therapeutic agent and the potential impact of drug partitioning and pharmacokinetics on drug activity.


Assuntos
Antineoplásicos , Arsênio , Arsenicais , Leucemia Promielocítica Aguda , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Arsênio/farmacologia , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Óxidos , Agregados Proteicos , Enxofre , Tretinoína/farmacologia , Tretinoína/uso terapêutico
11.
ISME J ; 16(10): 2348-2359, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35804051

RESUMO

Parasites are widespread and diverse in oceanic plankton and many of them infect single-celled algae for survival. How these parasites develop and scavenge energy within the host and how the cellular organization and metabolism of the host is altered remain open questions. Combining quantitative structural and chemical imaging with time-resolved transcriptomics, we unveil dramatic morphological and metabolic changes of the marine parasite Amoebophrya (Syndiniales) during intracellular infection, particularly following engulfment and digestion of nutrient-rich host chromosomes. Changes include a sequential acristate and cristate mitochondrion with a 200-fold increase in volume, a 13-fold increase in nucleus volume, development of Golgi apparatus and a metabolic switch from glycolysis (within the host) to TCA (free-living dinospore). Similar changes are seen in apicomplexan parasites, thus underlining convergent traits driven by metabolic constraints and the infection cycle. In the algal host, energy-producing organelles (plastid, mitochondria) remain relatively intact during most of the infection. We also observed that sugar reserves diminish while lipid droplets increase. Rapid infection of the host nucleus could be a "zombifying" strategy, allowing the parasite to digest nutrient-rich chromosomes and escape cytoplasmic defense, whilst benefiting from maintained carbon-energy production of the host cell.


Assuntos
Dinoflagellida , Microalgas , Parasitos , Animais , Carbono , Açúcares
12.
Plant Cell Environ ; 45(5): 1490-1506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128687

RESUMO

Halophytes accumulate and sequester high concentrations of salt in vacuoles while maintaining lower levels of salt in the cytoplasm. The current data on cellular and subcellular partitioning of salt in halophytes are, however, limited to only a few dicotyledonous C3 species. Using cryo-scanning electron microscopy X-ray microanalysis, we assessed the concentrations of Na, Cl, K, Ca, Mg, P and S in various cell types within the leaf-blades of a monocotyledonous C4 halophyte, Rhodes grass (Chloris gayana). We also linked, for the first time, elemental concentrations in chloroplasts of mesophyll and bundle sheath cells to their ultrastructure and photosynthetic performance of plants grown in nonsaline and saline (200 mM NaCl) conditions. Na and Cl accumulated to the highest levels in xylem parenchyma and epidermal cells, but were maintained at lower concentrations in photosynthetically active mesophyll and bundle sheath cells. Concentrations of Na and Cl in chloroplasts of mesophyll and bundle sheath cells were lower than in their respective vacuoles. No ultrastructural changes were observed in either mesophyll or bundle sheath chloroplasts, and photosynthetic activity was maintained in saline conditions. Salinity tolerance in Rhodes grass is related to specific cellular Na and Cl distributions in leaf tissues, and the ability to regulate Na and Cl concentrations in chloroplasts.


Assuntos
Tolerância ao Sal , Plantas Tolerantes a Sal , Cloroplastos/metabolismo , Íons/metabolismo , Folhas de Planta/metabolismo , Poaceae/metabolismo , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Vacúolos/metabolismo
13.
Dent Mater ; 38(2): 347-362, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34930621

RESUMO

OBJECTIVE: The aim of this study was to synthesize and characterize reduced nano graphene oxide (RGO) and graphene nanoplatelets (GNPs) doped with silver nanoparticles (nAg) and to prepare an experimental dentin adhesive modified with RGO/nAg and GNP/nAg nanofillers for studying various biological and mechanical properties after bonding to tooth dentin. METHODS: Nanoparticles were characterized for their morphology and chemical structure using electron microscopy and infrared spectroscopy. Experimental dentin adhesive was modified using two weight percentage (0.25% and 0.5%) of RGO/nAg and GNP/nAg to study its degree of conversion (DC), antimicrobial potential, and cytotoxicity. The effect and significance of these modified bonding agents on resin-dentin bonded interface were investigated by evaluating interfacial nanoleakage, micropermeability, nanodynamic mechanical analysis, micro-tensile bond strength (µTBS), and four-point bending strength (BS), RESULTS: Both 0.25% and 0.5% GNP/nAg graphene-modified adhesives showed comparable DC values to the commercial and experimental adhesive (range: 42-46%). The bacterial viability of the groups 0.25% and 0.5% GNP-Ag remained very low under 25% compared to RGO/nAg groups with low cytotoxicity profiles (cell viability>85%). Resin-bonded dentin interface created with GNP/nAg showed homogenous, well-defined hybrid layer and regularly formed long resin tags devoid of any microporosity as evidenced by SEM and confocal microscopy. The lowest nanoleakage and highest bending strength and µTBS was recorded for 0.25% GNP/nAg after 12 months of ageing. A significantly increased nanoelasticity was seen for all experimental groups except for control groups. SIGNIFICANCE: The addition of 0.25% GNP/nAg showed optimized anti-biofilm properties without affecting the standard adhesion characteristics.


Assuntos
Colagem Dentária , Grafite , Nanopartículas Metálicas , Biofilmes , Dentina , Adesivos Dentinários/química , Adesivos Dentinários/farmacologia , Grafite/farmacologia , Teste de Materiais , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Cimentos de Resina/química , Prata/química , Prata/farmacologia , Propriedades de Superfície , Resistência à Tração
14.
Biomater Sci ; 9(24): 8335-8346, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34783807

RESUMO

This study synthesized and characterized graphene nanoplatelets silanized with 3-(trimethoxysilyl)propyl methacrylate (MPS-GNP) for morphological and chemical characteristics. In addition, we modified a dentin bonding agent using different concentrations of MPS-GNP to study its interaction within the resin matrix of the adhesive, degree of conversion (DC), biological, and mechanical properties after bonding to tooth. Both 0.25% and 0.5% MPS-GNP-modified bonding agents showed comparable DC values to the unmodified control adhesive (range: 41%-43%). However, a statistically significant reduction in the DC was found when 0.25% and 0.5% non-silanized GNP was doped with the adhesive (<38%) (p < 0.05). On day 30, the bacterial viability of 0.5% GNP and MPS-GNP groups remained very low under 22% with the highest dead cell count (p < 0.05). GNP incorporated within the resin matrix of the dentin bonding agent showed clear evidence of several interfacial gap formations and non-union between the GNP surface and resin matrix, while the MPS-GNP modified dentin bonding agent showed MPS-GNP with no gap formation with complete union between the graphene surface and resin matrix. The decrease in the µTBS was least pronounced for 0.25% and 0.5% MPS-GNP groups. After 12 months of ageing, the groups 0.25% and 0.5% MPS-GNP also showed the highest BS as compared to the rest of the groups. Statistically significant reduction was seen in nanohardness at the hybrid layer and adhesive layer for GNP groups after 4 months of storage. The addition of up to 0.5% MPS-GNP showed optimized DC, antibiofilm activity, and micro-tensile bond strength without affecting the standard adhesion characteristics as compared to GNP alone.


Assuntos
Adesivos Dentinários , Cimentos de Resina , Plaquetas , Resinas Compostas , Dentina , Teste de Materiais , Propriedades de Superfície
15.
Infect Genet Evol ; 96: 105152, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34823027

RESUMO

Tabanids (syn. horse flies) are biting-flies of medical and veterinary significance because of their ability to transmit a range of pathogens including trypanosomes - some species of which carry a combined health and biosecurity risk. Invertebrate vectors responsible for transmitting species of Trypanosoma between Australian wildlife remains unknown, thus establishing the role of potential vector candidates such as tabanids is of utmost importance. The current study aimed to investigate the presence of indigenous trypanosomes in tabanids from an endemic area of south-west Australia. A total of 148 tabanids were collected, with morphological analysis revealing two subgenera: Scaptia (Pseudoscione) and S. (Scaptia) among collected flies. A parasitological survey using an HRM-qPCR and sequencing approach revealed a high (105/148; 71%) prevalence of trypanosomatid DNA within collected tabanids. Individual tissues - proboscis (labrum, labium and mandibles, hypopharynx), salivary glands, proventriculus, midgut, and hindgut and rectum - were also tested from a subset of 20 tabanids (n = 140 tissues), confirming the presence of Trypanosoma noyesi in 31% of screened tissues, accompanied by T. copemani (3%) and T. vegrandis/T.gilletti (5%). An unconfirmed trypanosomatid sp. was also detected (9%) within tissues. The difference between tissues infected with T. noyesi compared with tissues infected with other trypanosome species was statistically significant (p < 0.05), revealing T. noyesi as the more frequent species detected in the tabanids examined. Fluorescence in situ hybridisation (FISH) and scanning electron microscopy (SEM) confirmed intact parasites within salivary glands and the proboscis respectively, suggesting that both biological and mechanical modes of transmission could occur. This study reveals the presence of Australian Trypanosoma across tabanid tissues and confirms intact parasites within tabanid salivary glands and the proboscis for the first time. Further investigations are required to determine whether tabanids have the vectorial competence to transmit Australian trypanosomes between wildlife.


Assuntos
Dípteros/parasitologia , Insetos Vetores/parasitologia , Trypanosoma/isolamento & purificação , Tripanossomíase/veterinária , Animais , Animais Selvagens , Biosseguridade , Tripanossomíase/parasitologia , Tripanossomíase/transmissão , Austrália Ocidental
16.
Sci Data ; 8(1): 254, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593819

RESUMO

We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.


Assuntos
Bases de Dados Factuais , Fenótipo , Plantas , Austrália , Fenômenos Fisiológicos Vegetais
17.
Pathogens ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34451502

RESUMO

A growing number of indigenous trypanosomes have been reported to naturally infect a variety of Australian wildlife with some species of Trypanosoma implicated in the population decline of critically endangered marsupials. However, the mode of transmission of Australian trypanosomes is unknown since their vectors remain unidentified. Here we aimed to fill this current knowledge gap about the occurrence and identity of indigenous trypanosomes in Australian invertebrates by conducting molecular screening for the presence of Trypanosoma spp. in native ticks collected from south-west Australia. A total of 231 ticks (148 collected from vegetation and 83 retrieved directly from 76 marsupial hosts) were screened for Trypanosoma using a High-Resolution Melt (HRM) qPCR assay. An overall Trypanosoma qPCR positivity of 37% (46/125) and 34% (26/76) was detected in questing ticks and host-collected (i.e., feeding) ticks, respectively. Of these, sequencing revealed 28% (35/125) of questing and 28% (21/76) of feeding ticks were infected with one or more of the five species of trypanosome previously reported in this region (T. copemani, T. noyesi, T. vegrandis, T. gilletti, Trypanosoma sp. ANU2). This work has confirmed that Australian ticks are capable of harbouring several species of indigenous trypanosome and likely serve as their vectors.

18.
New Phytol ; 232(6): 2457-2474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34196001

RESUMO

Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.


Assuntos
Fagus , Micorrizas , Carbono , Nitrogênio , Raízes de Plantas
19.
Physiol Plant ; 172(3): 1724-1738, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33665808

RESUMO

The calcifuge habit of plants is commonly explained in terms of high soil pH and its effects on nutrient availability, particularly that of phosphorus (P). However, most Proteaceae that occur on nutrient-impoverished soils in south-western Australia are calcifuge, despite their ability to produce cluster-roots, which effectively mobilize soil P and micronutrients. We hypothesize that the mechanism explaining the calcifuge habit in Proteaceae is their sensitivity to P and calcium (Ca), and that soil-indifferent species are less sensitive to the interaction of these nutrients. In this study, we analyzed growth, gas-exchange rate, and chlorophyll fluorescence of two soil-indifferent and four calcifuge Hakea and Banksia (Proteaceae) species from south-western Australia, across a range of P and Ca concentrations in hydroponic solution. We observed Ca-enhanced P toxicity in all analyzed species, but to different extents depending on distribution type and genus. Increasing P supply enhanced plant growth, leaf biomass, and photosynthetic rates of soil-indifferent species in a pattern largely independent of Ca supply. In contrast, positive physiological responses to increasing [P] in calcifuges were either absent or limited to low Ca supply, indicating that calcifuges were far more sensitive to Ca-enhanced P toxicity. In calcifuge Hakeas, we attributed this to higher leaf [P], and in calcifuge Banksias to lower leaf zinc concentration. These differences help to explain these species' contrasting sensitivity to Ca-enhanced P toxicity and account for the exclusion of most Proteaceae from calcareous habitats. We surmise that Ca-enhanced P toxicity is a major factor explaining the calcifuge habit of Proteaceae, and, possibly, other P-sensitive plants.


Assuntos
Proteaceae , Hábitos , Fósforo , Folhas de Planta/química , Solo , Austrália Ocidental
20.
J Exp Bot ; 72(8): 3279-3293, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33543268

RESUMO

Lack of O2 and high concentrations of iron (Fe) and manganese (Mn) commonly occur in waterlogged soils. The development of a barrier to impede radial O2 loss (ROL) is a key trait improving internal O2 transport and waterlogging tolerance in plants. We evaluated the ability of the barrier to ROL to impede the entry of excess Fe into the roots of the waterlogging-tolerant grass Urochloa humidicola. Plants were grown in aerated or stagnant deoxygenated nutrient solution with 5 µM or 900 µM Fe. Quantitative X-ray microanalysis was used to determine cell-specific Fe concentrations at two positions behind the root apex in relation to ROL and the formation of apoplastic barriers. At a mature zone of the root, Fe was 'excluded' at the exodermis where a suberized lamella was evident, a feature also associated with a strong barrier to ROL. In contrast, the potassium (K) concentration was similar in all root cells, indicating that K uptake was not affected by apoplastic barriers. The hypothesis that the formation of a tight barrier to ROL impedes the apoplastic entry of toxic concentrations of Fe into the mature zones of roots was supported by the significantly higher accumulation of Fe on the outer side of the exodermis.


Assuntos
Oxigênio , Raízes de Plantas , Ferro , Poaceae , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...