Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Mech Behav Biomed Mater ; 118: 104394, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33691230

RESUMO

Cyclic testing of human hair reveals important details about the behaviour of fibres over many cycles of loading. Phenomena which are observed under static tensile tests give important clues about the form and behaviour of hair fibres, but these do not necessarily remain constant on the inevitable march to failure. In previous work, we demonstrated that curly fibres exhibited a toe-region during tensile tests. The form of curly fibres could be altered by mechanical manipulation but the curl could be recovered upon immersion in water. In this study, where straight and curly fibres are subject to cyclic loading, this characteristic toe-region was shown to be present in the first cycle of loading (for curly fibres). As the number of cycles increased (and the curly fibres progressively became straighter), the stress-strain response of curly fibres started to resemble that of straight fibres. This observation supports our previous hypothesis, which states that the toe-region can be attributed to the presence of a hydrogen bonding mechanism, which is present in curly fibres only, and can be altered by mechanical force. Interestingly, the alteration in load-bearing pattern in curly fibres did not necessarily translate to increased endurance, demonstrating that the relationship between fatigue and strength is a complex one in hair fibres.


Assuntos
Cabelo , Humanos , Teste de Materiais , Estresse Mecânico , Suporte de Carga
3.
J Invest Dermatol ; 140(1): 113-120, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31330147

RESUMO

The relationship between the geometric and mechanical profiles of hair fibers has been studied, with special focus on curly samples. Incidental observations pointed to a significantly different viscoelastic character with varying curliness. Further investigations confirmed initial observations, showing an initial distinct toe region behavior for curly fibers on the stress-strain plot, which is absent for straight fibers. This behavior suggested a difference in the viscoelastic nature of the curly fiber that is linked to mechanical energy stored in the fiber. Results also suggest that the strength of hair depends on two main components, and further pointed out that de facto methods of tensile testing may erode curly fiber strength during preparation. The main outcome of this study is that the tensile strength (σT) of hair fibers is composed of two (rather than one main) components, namely the toe region (σt) and the elastic region (σε), so that: σT=σt+σε. For noncurly fibers, the greatest part of fiber strength is derived from σε, while σt ≈ 0. For curly fibers, σt (i.e., springiness) adds significantly to the overall strength, even though σε remains the major contributor. Although these results require validation in larger studies, they are significant in the current understanding of curly hair. Also, they may represent a fundamental shift from the current understanding of tensile testing of human hair in general.


Assuntos
Doenças do Cabelo/metabolismo , Cabelo/fisiologia , Resistência à Tração/fisiologia , Fenômenos Biomecânicos , Elasticidade , Doenças do Cabelo/patologia , Humanos , Modelos Teóricos
4.
Proc Math Phys Eng Sci ; 475(2231): 20190516, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31824224

RESUMO

An attempt to understand and explain a peculiarity that was observed for curly fibres during experimentation revealed disparate literature reporting on several key issues. The phenotypical nature of curly fibres is only accurately understood within the larger scope of hair fibres, which are highly complex biological structures. A brief literature search produced thousands of research items. Besides the large amount of information on the topic, there was also great variability in research focus. From our review, it appeared that the complexity of hair biology, combined with the variety of research subtopics, often results in uncertainty when relating different aspects of investigation. During the literature investigation, we systematically categorized elements of curly hair research into three basic topics: essentially asking why fibres curl, what the curly fibre looks like and how the curly fibre behaves. These categories were subsequently formalized into a curvature fibre model that is composed of successive but distinctive tiers comprising the elements in curly hair research. The purpose of this paper is twofold: namely to present (i) a literature review that explores the different aspects of curly human scalp hair and (ii) the curvature fibre model as a systemized approach to investigating curly hair.

5.
Front Physiol ; 10: 112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846943

RESUMO

Contextual interpretation of hair fiber data is often blind to the effects of the dynamic complexity between different fiber properties. This intrinsic complexity requires systems thinking to decipher hair fiber accurately. Hair research, studied by various disciplines, follows a reductionist research approach, where elements of interest are studied from a local context with a certain amount of detachment from other elements or contexts. Following a systems approach, the authors are currently developing a cross-disciplinary taxonomy to provide a holistic view of fiber constituents and their interactions within large-scale dynamics. Based on the development process, this paper presents a review that explores the associated features, interrelationships and interactive complexities between physical, mechanical, biochemical and geometric features of natural, healthy hair fibers. Through the review, the importance of an appropriate taxonomy for interpreting hair fiber data across different disciplines is revealed. The review also demonstrates how seemingly unrelated fiber constituents are indeed interdependent and that these interdependencies may affect the behavior of the fiber. Finally, the review highlights how a non-integrative approach may have a negative impact on the reliability of hair data interpretation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...