Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 221: 106516, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801985

RESUMO

Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds ß-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl ß-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.


Assuntos
Escherichia coli , Galectina 3 , Isopropiltiogalactosídeo , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/biossíntese , Galectina 3/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isopropiltiogalactosídeo/farmacologia , Expressão Gênica , Galectinas/genética , Galectinas/metabolismo , Galectinas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo
2.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948402

RESUMO

Multivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both Gram-positive and Gram-negative bacteria. Proton Nuclear Magnetic Resonance (1H NMR) metabolomics is an important method for studying resistance development in bacteria, since this is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. In this project, the metabolic differences between wild type Bacillus cereus (B. cereus) samples and B. cereus that was mutated through 33 growth cycles in a nonlethal dose of a multivalent antimicrobial agent were identified. For additional comparison, samples for analysis of the wild type and mutated strains of B. cereus were prepared in both challenged and unchallenged conditions. A C16-DABCO (1,4-diazabicyclo-2,2,2-octane) and mannose functionalized poly(amidoamine) dendrimer (DABCOMD) were used as the multivalent quaternary ammonium antimicrobial for this hydrophilic metabolic analysis. Overall, the study reported here indicates that B. cereus likely change their peptidoglycan layer to protect themselves from the highly positively charged DABCOMD. This membrane fortification most likely leads to the slow growth curve of the mutated, and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for the membrane fortifications to occur as well as to the decreased diffusion of nutrients across the mutated membrane.


Assuntos
Farmacorresistência Bacteriana , Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Mutação , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/genética , Bacillus cereus/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Espectroscopia de Ressonância Magnética/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Mutação/efeitos dos fármacos
3.
Biomacromolecules ; 22(11): 4720-4729, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34704753

RESUMO

Galectins are galactoside-binding lectins that are functional dimers or higher-order oligomers. Multivalent binding has been shown to augment the relatively low affinity of the galectins for their galactoside-binding partners, enabling the galectins to play an important role in the global remodeling of cells that occurs during the stress conditions of disease states, including heart disease and cancer. The presence of galectins in the nematode Caenorhabditis elegans and their galactoside-binding properties have been demonstrated, but the role of multivalent interactions for C. elegans galectins is unknown. Here, we describe the synthesis of Galß1-4Fuc-functionalized poly(amidoamine) dendrimers and their utility in studies using C. elegans during oxidative stress. C. elegans were fed Galß1-4Fuc-functionalized dendrimers and RNA interference to knock down lectins lec-1 and lec-10 while undergoing oxidative stress. C. elegans that were pretreated with the glycodendrimers were less susceptible to oxidative stress than untreated controls. Worms that were fed fluorescently tagged glycodendrimers and imaged indicated that the dendrimers are primarily present in the digestive tract of the worms, and uptake into the vulva and proximal gonads could also be observed in some instances. This study suggests that multivalently presented Galß1-4Fuc can protect C. elegans from oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans , Dendrímeros , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dendrímeros/farmacologia , Fucose , Galactose , Galectinas/metabolismo , Estresse Oxidativo
4.
ACS Omega ; 5(45): 29017-29024, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225133

RESUMO

Measuring the binding affinity for proteins that can aggregate or undergo complex binding motifs presents a variety of challenges. In this study, fluorescence lifetime measurements using intrinsic tryptophan fluorescence were performed to address these challenges and to quantify the binding of a series of carbohydrates and carbohydrate-functionalized dendrimers to recombinant human galectin-3. Collectively, galectins represent an important target for study; in particular, galectin-3 plays a variety of roles in cancer biology. Galectin-3 binding dissociation constants (K D) were quantified: lactoside (73 ± 4 µM), methyllactoside (54 ± 10 µM), and lactoside-functionalized G(2), G(4), and G(6)-PAMAM dendrimers (120 ± 58 µM, 100 ± 45 µM, and 130 ± 25 µM, respectively). The chosen examples showcase the widespread utility of time-dependent fluorescence spectroscopy for determining binding constants, including interactions for which standard methods have significant limitations.

5.
Metabolomics ; 16(8): 82, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32705355

RESUMO

INTRODUCTION: Multivalent antimicrobial dendrimers are an exciting new system that is being developed to address the growing problem of drug resistant bacteria. Nuclear Magnetic Resonance (NMR) metabolomics is a quantitative and reproducible method for the determination of bacterial response to environmental stressors and for visualization of perturbations to biochemical pathways. OBJECTIVES: NMR metabolomics is used to elucidate metabolite differences between wild type and antimicrobially mutated Escherichia coli (E. coli) samples. METHODS: Proton (1H) NMR hydrophilic metabolite analysis was conducted on samples of E. coli after 33 growth cycles of a minimum inhibitory challenge to E. coli by poly(amidoamine) dendrimers functionalized with mannose and with C16-DABCO quaternary ammonium endgroups and compared to the metabolic profile of wild type E. coli. RESULTS: The wild type and mutated E. coli samples were separated into distinct sample sets by hierarchical clustering, principal component analysis (PCA) and sparse partial least squares discriminate analysis (sPLS-DA). Metabolite components of membrane fortification and energy related pathways had a significant p value and fold change between the wild type and mutated E. coli. Amino acids commonly associated with membrane fortification from cationic antimicrobials, such as lysine, were found to have a higher concentration in the mutated E. coli than in the wild type E. coli. N-acetylglucosamine, a major component of peptidoglycan synthesis, was found to have a 25-fold higher concentration in the mid log phase of the mutated E. coli than in the mid log phase of the wild type. CONCLUSION: The metabolic profile suggests that E. coli change their peptidoglycan composition in order to garner protection from the highly positively charged and multivalent C16-DABCO and mannose functionalized dendrimer.


Assuntos
Farmacorresistência Bacteriana/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Escherichia coli/metabolismo , Imageamento por Ressonância Magnética/métodos , Metaboloma
6.
Polym Chem ; 11(23): 3849-3862, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35222696

RESUMO

Dendritic polyglycerols (dPGs) are emerging as important polymers for the study of biological processes due to their relatively low toxicity and excellent biocompatibility. The highly branched nature and high density of endgroups make the dPGs particularly attractive frameworks for the study of multivalent interactions such as multivalent protein-carbohydrate interactions. Here, we report the synthesis of a series of lactose functionalized dPGs with different hydrodynamic radii. A series of lactose functionalized dPGs bearing different densities of lactose functional groups was also synthesized. These lactose functionalized dPGs were used to study the templated aggregation of galectin-3, a galactoside binding protein that is overexpressed during many processes involved in cancer progression. Dynamic light scattering measurements revealed a direct correlation between the hydrodynamic radii of the lactose functionalized dPGs and the size of the galectin-3/lactose functionalized dPG aggregates formed upon mixing the lactose functionalized dPGs with galectin-3 in solution. These studies exposed the critical role of galectin-3's N-terminal domain in formation of galectin-3 multimers and also enabled comparisons of polymer templated aggregation using nonspecific interactions versus specific protein-carbohydrate binding interactions.

7.
Bioconjug Chem ; 29(12): 4030-4039, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30372040

RESUMO

Chemoenzymatic synthesis is an important strategy for the formation of glycopolymers. The use of a smaller number of traditional chemical steps and enzyme catalyzed reactions increases the yield of glycopolymer that can be produced by reducing the overall number of synthetic steps. In addition, chemoenzymatic routes are likely to be more accessible to those without a background in carbohydrate synthesis, making glycopolymers more available for studies across a broader range of scientists. Here, the enzymatic addition of galactose to N-acetylglucosamine functionalized glycodendrimers reduced the requisite number of synthetic steps for the full chemical synthesis of N-acetyl lactosamine (Lac NAc) functionalized dendrimers to four steps. Unpurified cell lysate was used in the enzyme catalyzed glycosylation, and product glycodendrimers were readily purified by dialysis after enzymatic degradation of all protein components of the lysate in the crude reaction mixture. Lac NAc functionalized dendrimers were used very effectively in homotypic cancer cellular aggregation assays and were found to either inhibit or enhance galectin-3 mediated cancer cellular aggregation, with differences in outcomes dependent on the generation of Lac NAc functionalized dendrimers that were used.


Assuntos
Carboidratos/química , Enzimas/química , Galectinas/química , Polímeros/química , Polímeros/síntese química , Acetilglucosamina/química , Amino Açúcares/química , Sítios de Ligação , Linhagem Celular Tumoral , Glicosilação , Humanos
8.
Mol Pharm ; 13(11): 3827-3834, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27661609

RESUMO

The development of pathogenic bacteria resistant to current treatments is a major issue facing the world today. Here, the synthesis and biological activity of fourth generation poly(amidoamine) dendrimers decorated with 1-hexadecyl-azoniabicylo[2.2.2]octane (C16-DABCO), a quaternary ammonium compound known to have antibacterial activity, are described. This highly cationic dendrimer antibiotic was tested against several Gram positive and Gram negative strains of pathogenic bacteria and exhibited activity against both. Higher activity toward the Gram positive strains that were tested was observed. After the antimicrobial activity was assessed, E. coli and B. cereus were subjected to a resistance selection study. This study demonstrated that a multivalent approach to antimicrobial design significantly reduces the likelihood of developing bacterial resistance. Highly cationic dendrimers were also used as pretreatment of a membrane to prevent biofilm formation.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dendrímeros/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia
9.
Int J Mol Sci ; 17(9)2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27649167

RESUMO

This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.


Assuntos
Galectina 1/metabolismo , Neoplasias/patologia , Animais , Adesão Celular , Ciclodextrinas/química , Ciclodextrinas/metabolismo , Dendrímeros/química , Dendrímeros/metabolismo , Matriz Extracelular/metabolismo , Galectina 1/genética , Humanos , Invasividade Neoplásica , Neoplasias/metabolismo , Neovascularização Patológica , Poloxâmero/química , Poloxâmero/metabolismo , Rotaxanos/química , Rotaxanos/metabolismo , Microambiente Tumoral
10.
Beilstein J Org Chem ; 11: 739-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124876

RESUMO

Four generations of lactose-functionalized polyamidoamine (PAMAM) were employed to further the understanding of multivalent galectin-1 mediated interactions. Dynamic light scattering and fluorescence microscopy were used to study the multivalent interaction of galectin-1 with the glycodendrimers in solution, and glycodendrimers were observed to organize galectin-1 into nanoparticles. In the presence of a large excess of galectin-1, glycodendrimers nucleated galectin-1 into nanoparticles that were remarkably homologous in size (400-500 nm). To understand augmentation of oncologic cellular aggregation by galectin-1, glycodendrimers were used in cell-based assays with human prostate carcinoma cells (DU145). The results revealed that glycodendrimers provided competitive binding sites for galectin-1, which diverted galectin-1 from its typical function in cellular aggregation of DU145 cells.

11.
ACS Appl Mater Interfaces ; 6(20): 18087-97, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25249268

RESUMO

Novel dendronized silica substrates were synthesized. First- and second- generation polyaryl ether dendrons were appended to silica surfaces. Using Cu(I) mediated cycloaddition "click" chemistry, ß-cyclodextrin was tethered to the dendronized surfaces and to a nondendronized surface for comparison purposes. This synthesis strategy affords a modular, versatile method for surface functionalization in which the density of functional groups can be readily varied by changing the generation of dendron used. The surfaces, which are capable of adsorbing target analytes, have been characterized and studied using X-ray photoelectron spectroscopy (XPS) and vibrational sum frequency spectroscopy (VSFS). Fluorescence spectroscopy was used to study the surfaces' ability to retain coumarin 152 (C152). These studies indicated that the ß-cyclodextrin functionalized surfaces not only adsorbed C152 but also retained it through multiple aqueous washes. Furthermore, these observations were quantified and show that substrates functionalized with first-generation dendrons have a more than 6 times greater capacity to adsorb C152 than slides functionalized with monomeric ß-cyclodextrin. The first-generation dendrons also have 2 times greater the capacity than the larger generation dendrons. This result is explained by describing a dendron that has an increased number of ß-cyclodextrin monomers but, when covalently bound to silica, has a footprint too large to optimize the number of accessible monomers. Overall, both dendronized surfaces demonstrated an increased capacity to adsorb targeted analytes over the slides functionalized with monomeric ß-cyclodextrin. The studies reported provide a methodology for characterizing and evaluating the properties of novel, highly functional surfaces.

12.
Chembiochem ; 15(14): 2106-12, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25138772

RESUMO

By using lactose-functionalized poly(amidoamine) dendrimers as a tunable multivalent platform, we studied cancer cell aggregation in three different cell lines (A549, DU-145, and HT-1080) with galectin-3. We found that small lactose-functionalized G(2)-dendrimer 1 inhibited galectin-3-induced aggregation of the cancer cells. In contrast, dendrimer 4 (a larger, generation 6 dendrimer with 100 carbohydrate end groups) caused cancer cells to aggregate through a galectin-3 pathway. This study indicates that inhibition of cellular aggregation occurred because 1 provided competitive binding sites for galectin-3 (compared to its putative cancer cell ligand, TF-antigen on MUC1). Dendrimer 4, in contrast, provided an excess of ligands for galectin-3 binding; this caused crosslinking and aggregation of cells to be increased.


Assuntos
Dendrímeros/metabolismo , Galectina 3/metabolismo , Lactose/metabolismo , Mucina-1/metabolismo , Neoplasias/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Linhagem Celular Tumoral , Dendrímeros/química , Humanos , Lactose/análogos & derivados , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
13.
Beilstein J Org Chem ; 10: 1570-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161713

RESUMO

Galectin-3 meditates cell surface glycoprotein clustering, cross linking, and lattice formation. In cancer biology, galectin-3 has been reported to play a role in aggregation processes that lead to tumor embolization and survival. Here, we show that lactose-functionalized dendrimers interact with galectin-3 in a multivalent fashion to form aggregates. The glycodendrimer-galectin aggregates were characterized by dynamic light scattering and fluorescence microscopy methodologies and were found to be discrete particles that increased in size as the dendrimer generation was increased. These results show that nucleated aggregation of galectin-3 can be regulated by the nucleating polymer and provide insights that improve the general understanding of the binding and function of sugar-binding proteins.

14.
Carbohydr Res ; 347(1): 142-6, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22094006

RESUMO

InCl(3), InBr(3), and In(OTf)(3) were tested as promoters in the preparation of glycosides from trichloroacetimidate precursors. A range of protecting groups and of alcohol acceptors were used to determine the versatility of these promoters. Disaccharide formation was demonstrated. In most cases, the In(III) compounds were shown to promote glycosylation better than the widely used promoter BF(3)·OEt(2).


Assuntos
Índio/química , Catálise , Glicosídeos/química , Glicosilação , Temperatura
15.
J Phys Chem B ; 115(16): 4613-20, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21469686

RESUMO

Dendrimers are attractive templates to display functional molecular components. Since the behavior of dendrimer systems can depend greatly on the accessibility of these molecular components to the external environment, and on the spatial arrangement of functional groups attached to the dendrimer terminal branches (end-groups), techniques to determine the locations of end-groups are highly desirable. In this report, we describe a method to analyze the EPR spectra of multiple generations of poly(amidoamine) (PAMAM) dendrimers which have spin-labels attached to end-groups in variable percentages of the total number of available sites. The spectra are treated as a convolution of a narrow spin-label spectrum and a variable line broadening function. Trends in the parameters that describe the best-fit line broadening function with spin-label loading reveal the spatial arrangements and homogeneity of spin environments of the labels. We observe a shift in the end-group distribution from generation 3 (G(3)) to G(4) dendrimers that indicates a change in morphology from an open, extended structure to a more dense, compact arrangement.

16.
Bioorg Med Chem Lett ; 21(17): 5078-83, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21524579

RESUMO

The development of methodology that is designed to allow a significant increase in the patterning and in the functionalization of the dendrimer is the ultimate goal of the research described here. Glycoside clusters based on TRIS were formed using click chemistry and were attached to PAMAM dendrimers. A series of dendrimers bearing tris-mannoside and an ethoxyethanol group was synthesized, and the binding interactions of these dendrimers with Concanavalin A were evaluated using inhibition ELISAs. The results of the inhibition ELISAs suggest that tris-mannoside clusters can replace individual sugars on the dendrimer without loss of function. Since tris-mannoside clustering allows for a redistribution of the dendrimers' surface functionalities, from this chemistry one can envision patterned dendrimers that incorporate multiple groups to increase the function and utility of the dendrimer.


Assuntos
Dendrímeros/química , Sequência de Carboidratos , Ensaio de Imunoadsorção Enzimática , Ligantes , Dados de Sequência Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
17.
Tetrahedron ; 66(29): 5305-5310, 2010 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-20798896

RESUMO

Understanding protein-carbohydrate interactions is essential for elucidating biological pathways and cellular mechanisms but is often difficult due to the prevalence of multivalent interactions. Here, we evaluate the multivalent glycodendrimer framework as a means to describe the inhibition potency of multivalent mannose-functionalized dendrimers using surface plasmon resonance (SPR). Using highly robust, mannose-functionalized dithiol self-assembled monolayers on gold surfaces, we found that glycodendrimers were efficient inhibitors of protein-carbohydrate interactions. IC(50) values ranging from 260 nM to 13 nM were obtained for mannose-functionalized dendrimers with Concanavalin A.

18.
Nat Immunol ; 11(5): 427-34, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20305659

RESUMO

A major pathway for B cell acquisition of lymph-borne particulate antigens relies on antigen capture by subcapsular sinus macrophages of the lymph node. Here we tested whether this mechanism is also important for humoral immunity to inactivated influenza virus. By multiple approaches, including multiphoton intravital imaging, we found that antigen capture by sinus-lining macrophages was important for limiting the systemic spread of virus but not for the generation of influenza-specific humoral immunity. Instead, we found that dendritic cells residing in the lymph node medulla use the lectin receptor SIGN-R1 to capture lymph-borne influenza virus and promote humoral immunity. Thus, our results have important implications for the generation of durable humoral immunity to viral pathogens through vaccination.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Endocitose , Vírus da Influenza A/imunologia , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Anticorpos Antivirais/sangue , Apresentação de Antígeno , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Movimento Celular , Células Cultivadas , Ácido Clodrônico/administração & dosagem , Dendrímeros/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/genética , Cadeias Pesadas de Imunoglobulinas/genética , Imunoterapia Ativa , Vírus da Influenza A/patogenicidade , Vacinas contra Influenza/administração & dosagem , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Linfonodos/patologia , Linfonodos/virologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/virologia , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia
19.
J Am Chem Soc ; 131(46): 16608-9, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19873969

RESUMO

Aggregation plays an integral role in multivalent protein-carbohydrate interactions, Alzheimer's and other amyloid-related diseases, and infection response. Efforts to apply controlled aggregation in toxin sensors have been made. We have developed a label-free intrinsic fluorescence lifetime assay that uniquely can monitor aggregation processes in real time without interference from precipitation. Fluorescence decay curves were measured with high precision at 1 s time intervals following addition of a glycodendrimer to a lectin-containing solution. Changes in the fluorescence intensity and lifetime signified formation of complexes. However, these changes were not associated with the initial lectin-sugar binding events. Rather, they appeared to be caused by clustering and subsequent conformational rearrangement of the lectins. Studies were conducted with mannose-functionalized polyamidoamine (PAMAM) dendrimers of the second through sixth generations and Concanavalin A. The apparent rate constant, when expressed on a per-mannose basis, increased with dendrimer generation, particularly in going from the fourth to the sixth generation. However, the identical fluorescence decay waveforms for saturating amounts of dendrimer suggested that all of the glycodendrimer generations studied reach a comparable state of aggregation. Although self-quenching of tryptophan resonances that was induced by clustering was monitored in this study, the reported method is not limited to such and is viable for numerous binding studies.


Assuntos
Concanavalina A/química , Medições Luminescentes , Poliaminas/química , Proteínas/química , Dendrímeros , Fluorescência , Triptofano/química , Triptofano/metabolismo
20.
Anal Chem ; 81(12): 4889-97, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19462965

RESUMO

Carbohydrate-protein binding is important to many areas of biochemistry. Here, backscattering interferometry (BSI) has been shown to be a convenient and sensitive method for obtaining quantitative information about the strengths and selectivities of such interactions. The surfaces of glass microfluidic channels were covalently modified with extravidin, to which biotinylated lectins were subsequently attached by incubation and washing. The binding of unmodified carbohydrates to the resulting avidin-immobilized lectins was monitored by BSI. Dose-response curves that were generated within several minutes and were highly reproducible in multiple wash/measure cycles provided adsorption coefficients that showed mannose to bind to concanavalin A (conA) with 3.7 times greater affinity than glucose consistent with literature values. Galactose was observed to bind selectively and with similar affinity to the lectin BS-1. The avidities of polyvalent sugar-coated virus particles for immobilized conA were much higher than monovalent glycans, with increases of 60-200 fold per glycan when arrayed on the exterior surface of cowpea mosaic virus or bacteriophage Qbeta. Sugar-functionalized PAMAM dendrimers showed size-dependent adsorption, which was consistent with the expected density of lectins on the surface. The sensitivity of BSI matches or exceeds that of surface plasmon resonance and quartz crystal microbalance techniques, and is sensitive to the number of binding events, rather than changes in mass. The operational simplicity and generality of BSI, along with the near-native conditions under which the target binding proteins are immobilized, make BSI an attractive method for the quantitative characterization of the binding functions of lectins and other proteins.


Assuntos
Carboidratos/análise , Interferometria/métodos , Lectinas/química , Avidina/química , Biotina/química , Carboidratos/química , Concanavalina A/química , Lectinas/metabolismo , Metaboloma , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...