Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 108: 129810, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38782078

RESUMO

PCI-34051 is a valuable tool to interrogate the therapeutic effects of selective inhibition of HDAC8. However, it has not advanced to clinical trials, perhaps due to poor PK or off-target effects. We hypothesized that the presence of a hydroxamic acid (HA) group in PCI-34051 contributed to its lack of advancement. Therefore, we replaced the HA in the PCI-34051 scaffold with a series of moieties that have the potential to bind to Zn and evaluated their activity in a HDAC8 assay. Surprisingly, none of the replacements effectively mimicked the HA, and analogs lost significant potency. Evaluation of the analogs' affinity to Zn indicated that none had affinity for Zn within the same range as the HA. These studies point to the difficulty in the application of bioisosteric replacements for Zn binding motifs.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Ácidos Hidroxâmicos , Proteínas Repressoras , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Humanos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Zinco/química , Zinco/farmacologia , Estrutura Molecular , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Relação Dose-Resposta a Droga , Indóis
3.
SLAS Discov ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37549772

RESUMO

Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines. Representative compounds from the 3 series substantially reduced both endogenous and DHT-enhanced expression and secretion of the prostate specific antigen (PSA) cancer biomarker in the C4-2 castration resistant prostate cancer (CRPC) cell line. The comparatively weak activities of series compounds in the H3-DHT and/or TIF2 box 3 LXXLL-peptide binding assays to the recombinant ligand binding domain of AR suggest that direct antagonism at the orthosteric ligand binding site or AF-2 surface respectively are unlikely mechanisms of action. Cellular enhanced thermal stability assays (CETSA) indicated that compounds engaged AR and reduced the maximum efficacy and right shifted the EC50 of DHT-enhanced AR thermal stabilization consistent with the effects of negative allosteric modulators. Molecular docking of potent representative hits from each series to AR structures suggest that S1-1 and S2-6 engage a novel binding pocket (BP-1) adjacent to the orthosteric ligand binding site, while S3-11 occupies the AR binding function 3 (BF-3) allosteric pocket. Hit binding poses indicate spaces and residues adjacent to the BP-1 and BF-3 pockets that will be exploited in future medicinal chemistry optimization studies. Small molecule allosteric modulators that prevent/disrupt AR PPIs with coactivators like TIF2 to alter transcriptional activation in the presence of orthosteric agonists might evade the resistance mechanisms to existing prostate cancer drugs and provide novel starting points for medicinal chemistry lead optimization and future development into therapies for metastatic CRPC.

4.
SLAS Discov ; 27(1): 39-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058175

RESUMO

In solid tumors like head and neck cancer (HNC), chronic and acute hypoxia have serious adverse clinical consequences including poorer overall patient prognosis, enhanced metastasis, increased genomic instability, and resistance to radiation-, chemo-, or immuno-therapies. However, cells in the two-dimensional monolayer cultures typically used for cancer drug discovery experience 20%-21% O2 levels (normoxic) which are 4-fold higher than O2 levels in normal tissues and ≥10-fold higher than in the hypoxic regions of solid tumors. The oxygen electrodes, exogenous bio-reductive markers, and increased expression of endogenous hypoxia-regulated proteins like HIF-1α generally used to mark hypoxic regions in solid tumors are impractical in large sample numbers and longitudinal studies. We used a novel homogeneous live-cell permeant HypoxiTRAK™ (HPTK) molecular probe compatible with high content imaging detection, analysis, and throughput to identify and quantify hypoxia levels in live HNC multicellular tumor spheroid (MCTS) cultures over time. Accumulation of fluorescence HPTK metabolite in live normoxic HNC MCTS cultures correlated with hypoxia detection by both pimonidazole and HIF-1α staining. In HNC MCTSs, hypoxic cytotoxicity ratios for the hypoxia activated prodrugs (HAP) evofosfamide and tirapazamine were much smaller than have been reported for uniformly hypoxic 2D monolayers in gas chambers, and many viable cells remained after HAP exposure. Cells in solid tumors and MCTSs experience three distinct O2 microenvironments dictated by their distances from blood vessels or MCTS surfaces, respectively; oxic, hypoxic, or intermediate levels of hypoxia. These studies support the application of more physiologically relevant in vitro 3D models that recapitulate the heterogeneous microenvironments of solid tumors for preclinical cancer drug discovery.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Hipóxia/tratamento farmacológico , Esferoides Celulares , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral
5.
SLAS Discov ; 26(5): 712-729, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33208016

RESUMO

We describe the development, optimization, and validation of 384-well growth inhibition assays for six patient-derived melanoma cell lines (PDMCLs), three wild type (WT) for BRAF and three with V600E-BRAF mutations. We conducted a pilot drug combination (DC) high-throughput screening (HTS) of 45 pairwise 4×4 DC matrices prepared from 10 drugs in the PDMCL assays: two B-Raf inhibitors (BRAFi), a MEK inhibitor (MEKi), and a methylation agent approved for melanoma; cytotoxic topoisomerase II and DNA methyltransferase chemotherapies; and drugs targeting the base excision DNA repair enzyme APE1 (apurinic/apyrimidinic endonuclease-1/redox effector factor-1), SRC family tyrosine kinases, the heat shock protein 90 (HSP90) molecular chaperone, and histone deacetylases.Pairwise DCs between dasatinib and three drugs approved for melanoma therapy-dabrafenib, vemurafenib, or trametinib-were flagged as synergistic in PDMCLs. Exposure to fixed DC ratios of the SRC inhibitor dasatinib with the BRAFis or MEKis interacted synergistically to increase PDMCL sensitivity to growth inhibition and enhance cytotoxicity independently of PDMCL BRAF status. These DCs synergistically inhibited the growth of mouse melanoma cell lines that either were dabrafenib-sensitive or had acquired resistance to dabrafenib with cross resistance to vemurafenib, trametinib, and dasatinib. Dasatinib DCs with dabrafenib, vemurafenib, or trametinib activated apoptosis and increased cell death in melanoma cells independently of their BRAF status or their drug resistance phenotypes. These preclinical in vitro studies provide a data-driven rationale for the further investigation of DCs between dasatinib and BRAFis or MEKis as candidates for melanoma combination therapies with the potential to improve outcomes and/or prevent or delay the emergence of disease resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais/normas , Sinergismo Farmacológico , Ensaios de Triagem em Larga Escala/normas , Humanos , Melanoma/tratamento farmacológico , Camundongos , Reprodutibilidade dos Testes
6.
Regul Toxicol Pharmacol ; 117: 104764, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798611

RESUMO

Screening certain environmental chemicals for their ability to interact with endocrine targets, including the androgen receptor (AR), is an important global concern. We previously developed a model using a battery of eleven in vitro AR assays to predict in vivo AR activity. Here we describe a revised mathematical modeling approach that also incorporates data from newly available assays and demonstrate that subsets of assays can provide close to the same level of predictivity. These subset models are evaluated against the full model using 1820 chemicals, as well as in vitro and in vivo reference chemicals from the literature. Agonist batteries of as few as six assays and antagonist batteries of as few as five assays can yield balanced accuracies of 95% or better relative to the full model. Balanced accuracy for predicting reference chemicals is 100%. An approach is outlined for researchers to develop their own subset batteries to accurately detect AR activity using assays that map to the pathway of key molecular and cellular events involved in chemical-mediated AR activation and transcriptional activity. This work indicates in vitro bioactivity and in silico predictions that map to the AR pathway could be used in an integrated approach to testing and assessment for identifying chemicals that interact directly with the mammalian AR.


Assuntos
Antagonistas de Receptores de Andrógenos/toxicidade , Androgênios/toxicidade , Substâncias Perigosas/toxicidade , Modelos Teóricos , Receptores Androgênicos , Antagonistas de Receptores de Andrógenos/metabolismo , Androgênios/metabolismo , Animais , Exposição Ambiental/prevenção & controle , Exposição Ambiental/estatística & dados numéricos , Substâncias Perigosas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Receptores Androgênicos/metabolismo
7.
SLAS Discov ; 25(4): 329-349, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31983262

RESUMO

With approval rates <5% and the probability of success in oncology clinical trials of 3.4%, more physiologically relevant in vitro three-dimensional models are being deployed during lead generation to select better drug candidates for solid tumors. Multicellular tumor spheroids (MCTSs) resemble avascular tumor nodules, micrometastases, or the intervascular regions of large solid tumors with respect to morphology, cell-cell and cell-extracellular matrix contacts, and volume growth kinetics. MCTSs develop gradients of nutrient and oxygen concentration resulting in diverse microenvironments with differential proliferation and drug distribution zones. We produced head and neck squamous cell carcinoma (HNSCC) MCTSs in 384-well U-bottom ultra-low-attachment microtiter plates and used metabolic viability and imaging methods to measure morphologies, growth phenotypes and the effects of 19 anticancer drugs. We showed that cell viability measurements underestimated the impact of drug exposure in HNSCC MCTS cultures, but that incorporating morphology and dead-cell staining analyses increased the number of drugs judged to have substantially impacted MCTS cultures. A cumulative multiparameter drug impact score enabled us to stratify MCTS drug responses into high-, intermediate-, and low-impact tiers, and maximized the value of these more physiologically relevant tumor cultures. It is conceivable that the viable cells present in MCTS cultures after drug exposure arise from drug-resistant populations that could represent a source of drug failure and recurrence. Long-term monitoring of treated MCTS cultures could provide a strategy to determine whether these drug-resistant populations represent circumstances where tumor growth is delayed and may ultimately give rise to regrowth.


Assuntos
Antineoplásicos/farmacologia , Detecção Precoce de Câncer , Esferoides Celulares/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microambiente Tumoral/efeitos dos fármacos
8.
SLAS Discov ; 24(6): 653-668, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31039321

RESUMO

Systematic unbiased high-throughput screening (HTS) of drug combinations (DCs) in well-characterized tumor cell lines is a data-driven strategy to identify novel DCs with potential to be developed into effective therapies. Four DCs from a DC HTS campaign were selected for confirmation; only one appears in clinicaltrials.gov and limited preclinical in vitro data indicates that the drug pairs interact synergistically. Nineteen DC-tumor cell line sets were confirmed to interact synergistically in three pharmacological interaction models. We developed an imaging assay to quantify accumulation of the ABCG2 efflux transporter substrate Hoechst. Gefitinib and raloxifene enhanced Hoechst accumulation in ABCG2 (BCRP)-expressing cells, consistent with inhibition of ABCG2 efflux. Both drugs also inhibit ABCB1 efflux. Mitoxantrone, daunorubicin, and vinorelbine are substrates of one or more of the ABCG2, ABCB1, or ABCC1 efflux transporters expressed to varying extents in the selected cell lines. Interactions between ABC drug efflux transporter inhibitors and substrates may have contributed to the observed synergy; however, other mechanisms may be involved. Novel synergistic DCs identified by HTS were confirmed in vitro, and plausible mechanisms of action studied. Similar approaches may justify the testing of novel HTS-derived DCs in mouse xenograft human cancer models and support the clinical evaluation of effective in vivo DCs in patients.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Humanos , Imagem Molecular , Projetos Piloto
9.
SLAS Discov ; 24(3): 242-263, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30500310

RESUMO

Animal and clinical studies demonstrate that cancer drug combinations (DCs) are more effective than single agents. However, it is difficult to predict which DCs will be more efficacious than individual drugs. Systematic DC high-throughput screening (HTS) of 100 approved drugs in the National Cancer Institute's panel of 60 cancer cell lines (NCI-60) produced data to help select DCs for further consideration. We miniaturized growth inhibition assays into 384-well format, increased the fetal bovine serum amount to 10%, lengthened compound exposure to 72 h, and used a homogeneous detection reagent. We determined the growth inhibition 50% values of individual drugs across 60 cell lines, selected drug concentrations for 4 × 4 DC matrices (DCMs), created DCM master and replica daughter plate sets, implemented the HTS, quality control reviewed the data, and analyzed the results. A total of 2620 DCMs were screened in 60 cancer cell lines to generate 3.04 million data points for the NCI ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combinations) database. We confirmed in vitro a synergistic drug interaction flagged in the DC HTS between the vinca-alkaloid microtubule assembly inhibitor vinorelbine (Navelbine) tartrate and the epidermal growth factor-receptor tyrosine kinase inhibitor gefitinib (Iressa) in the SK-MEL-5 melanoma cell line. Seventy-five percent of the DCs examined in the screen are not currently in the clinical trials database. Selected synergistic drug interactions flagged in the DC HTS described herein were subsequently confirmed by the NCI in vitro, evaluated mechanistically, and were shown to have greater than single-agent efficacy in mouse xenograft human cancer models. Enrollment is open for two clinical trials for DCs that were identified in the DC HTS. The NCI ALMANAC database therefore constitutes a valuable resource for selecting promising DCs for confirmation, mechanistic studies, and clinical translation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Ensaios de Triagem em Larga Escala , Humanos
10.
Assay Drug Dev Technol ; 17(1): 17-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592624

RESUMO

Multicellular tumor spheroid (MCTS) cultures represent more physiologically relevant in vitro cell tumor models that recapitulate the microenvironments and cell-cell or cell-extracellular matrix interactions which occur in solid tumors. We characterized the morphologies, viability, and growth behaviors of MCTSs produced by 11 different head and neck squamous cell carcinoma (HNSCC) cell lines seeded into and cultured in ultra-low attachment microtiter plates (ULA-plates) over extended periods of time. HNSCC MCTS cultures developed microenvironments, which resulted in differences in proliferation rates, metabolic activity, and mitochondrial functional activity between cells located in the outer layers of the MCTS and cells in the interior. HNSCC MCTS cultures exhibited drug penetration and distribution gradients and some developed necrotic cores. Perhaps the most profound effect of culturing HNSCC cell lines in MCTS cultures was their dramatically altered and varied growth phenotypes. Instead of the exponential growth that are characteristic of two-dimensional HNSCC growth inhibition assays, some MCTS cultures displayed linear growth rates, categorized as rapid, moderate, or slow, dormant MCTSs remained viable but did not grow, and some MCTSs exhibited death phenotypes that were either progressive and slow or rapid. The ability of MCTS cultures to develop microenvironments and to display a variety of different growth phenotypes provides in vitro models that are more closely aligned with solid tumors in vivo. We anticipate that the implementation MCTS models to screen for new cancer drugs for solid tumors like HNSCC will produce leads that will translate better in in vivo animal models and patients.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Doxorrubicina/farmacologia , Ensaios de Triagem em Larga Escala , Esferoides Celulares/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Células Tumorais Cultivadas
11.
Assay Drug Dev Technol ; 16(6): 297-319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109944

RESUMO

Twenty percent of prostate cancer (PCa) patients develop a noncurable drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC). Overexpression of Androgen Receptor (AR) coactivators such as transcriptional intermediary factor 2 (TIF2) is associated with poor CRPC patient outcomes. We describe the implementation of the AR-TIF2 protein-protein interaction biosensor (PPIB) assay in a high-content screening (HCS) campaign of 143,535 compounds. The assay performed robustly and reproducibly and enabled us to identify compounds that inhibited dihydrotestosterone (DHT)-induced AR-TIF2 protein-protein interaction (PPI) formation or disrupted preexisting AR-TIF2 PPIs. We used multiparameter HCS data z-scores to identify and deprioritize cytotoxic or autofluorescent outliers and confirmed the resulting qualified actives in triplicate. None of the confirmed AR-TIF2 PPIB inhibitors/disruptors exhibited activity in a p53-hDM2 PPIB counter screen, indicating that they were unlikely to be either nonselective PPI inhibitors or to interfere with the biosensor assay format. However, eight confirmed AR-TIF2 PPIB actives also inhibited the glucocorticoid receptor (GR) nuclear translocation counter screen by >50%. These compounds were deprioritized because they either lacked AR specificity/selectivity, or they inhibited a shared component of the AR and GR signaling pathways. Twenty-nine confirmed AR-TIF2 PPIB actives also inhibited the AR nuclear localization counter screen, suggesting that they might indirectly inhibit the AR-TIF2 PPIB assay rather than directly blocking/disrupting PPIs. A total of 62.2% of the confirmed actives inhibited the DHT-induced AR-TIF2 PPI formation in a concentration-dependent manner with IC50s < 40 µM, and 59.4% also disrupted preexisting AR-TIF2 PPI complexes. Overall, the hit rate for the AR-TIF2 PPIB HCS campaign was 0.12%, and most hits inhibited AR-TIF2 PPI formation and disrupted preexisting AR-TIF2 complexes with similar AR-red fluorescent protein distribution phenotypes. Further secondary and tertiary hit characterization assays are underway to select AR-TIF2 PPI inhibitor/disruptor hits suitable for medicinal chemistry lead optimization and development into novel PCa/CRPC therapeutics.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala , Coativador 2 de Receptor Nuclear/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Coativador 2 de Receptor Nuclear/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica/efeitos dos fármacos , Células Tumorais Cultivadas
12.
Assay Drug Dev Technol ; 16(1): 27-50, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29215913

RESUMO

High cancer drug development attrition rates have provoked considerable debate about whether the two-dimensional tumor growth inhibition high-throughput screening assays used in pre-clinical lead discovery adequately reflect solid tumor complexity. We used automated high-content screening image acquisition and analysis methods to compare fluorescent drug uptake, accumulation, and distribution in Cal33 and FaDu head and neck cancer (HNC) monolayer and multicellular tumor spheroid (MCTS) models. Ellipticine, idarubicin, daunorubicin, and doxorubicin were studied because of their fluorescent properties and broad anti-tumor activities. HNC MCTSs were generated in 384-well ultra-low attachment plates where compound exposure, image acquisition, and analysis could be performed in situ. Fluorescent drug accumulation in Cal33 monolayer and MCTS cultures was linear with respect to concentration, and appeared to achieve steady-state levels within 10-15 min of drug exposure, which were maintained through 30-45 min. Drug accumulation in monolayers was independent of cell number and/or density, and every cell achieved uniform drug concentrations. In MCTSs, however, drug accumulation increased as the number of cells and sizes of the MCTSs became bigger. Drugs exhibited restricted penetration and distribution gradients, accumulating preferentially in cells in the outer layers of MCTSs relative to those in the inner cores. Cal33 monolayers were 6-, 20-, 10-, and 16-fold more sensitive than MCTSs to growth inhibition by ellipticine, idarubicin, daunorubicin, and doxorubicin, respectively. In Cal33 MCTSs exposed to ellipticine or doxorubicin for 24 h, MCTSs were smaller and although they still exhibited drug penetration and distribution gradients, the fluorescent intensity difference between outer and inner cells was reduced. After a 24 h exposure, both drugs had penetrated throughout FaDu MCTSs, consistent with drug-induced death of peripheral cell layers enhancing drug penetration. The increased resistance of MCTS cultures and their ability to recapitulate drug penetration and distribution gradients argues strongly for the deployment of these more physiological models in cancer lead discovery. MCTSs have the potential to enhance the correlation between in vitro potencies and in vivo efficacy, and ultimately may lead to improved cancer drug approval rates.


Assuntos
Antineoplásicos/farmacocinética , Técnicas de Cultura de Células , Neoplasias de Cabeça e Pescoço/metabolismo , Ensaios de Triagem em Larga Escala , Modelos Biológicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Relação Estrutura-Atividade , Distribuição Tecidual
13.
Methods Mol Biol ; 1683: 355-369, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29082502

RESUMO

The poor success rate of cancer drug discovery has prompted efforts to develop more physiologically relevant cellular models for early preclinical cancer lead discovery assays. For solid tumors, this would dictate the implementation of three-dimensional (3D) tumor models that more accurately recapitulate human solid tumor architecture and biology. A number of anchorage-dependent and anchorage-independent in vitro 3D cancer models have been developed together with homogeneous assay methods and high content imaging approaches to assess tumor spheroid morphology, growth, and viability. However, several significant technical challenges have restricted the implementation of some 3D models in HTS. We describe a method that uses 384-well U-bottomed ultra-low attachment (ULA) microplates to produce head and neck tumor spheroids for cancer drug discovery assays. The production of multicellular head and neck cancer spheroids in 384-well ULA-plates occurs in situ, does not impose an inordinate tissue culture burden for HTS, is readily compatible with automation and homogeneous assay detection methods, and produces high-quality uniform-sized spheroids that can be utilized in cancer drug cytotoxicity assays within days rather than weeks.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Neoplasias de Cabeça e Pescoço , Humanos , Microscopia , Esferoides Celulares/efeitos dos fármacos
14.
J Chem Biol ; 10(3): 129-141, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28684999

RESUMO

Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.

15.
Assay Drug Dev Technol ; 14(8): 453-477, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27606620

RESUMO

The continued activation of androgen receptor (AR) transcription and elevated expression of AR and transcriptional intermediary factor 2 (TIF2) coactivator observed in prostate cancer (CaP) recurrence and the development of castration-resistant CaP (CRPC) support a screening strategy for small-molecule inhibitors of AR-TIF2 protein-protein interactions (PPIs) to find new drug candidates. Small molecules can elicit tissue selective effects, because the cells of distinct tissues express different levels and cohorts of coregulatory proteins. We reconfigured the AR-TIF2 PPI biosensor (PPIB) assay in the PC-3 CaP cell line to determine whether AR modulators and hits from an AR-TIF2 PPIB screen conducted in U-2 OS cells would behave differently in the CaP cell background. Although we did not observe any significant differences in the compound responses between the assay performed in osteosarcoma and CaP cells, the U-2 OS AR-TIF2 PPIB assay would be more amenable to screening, because both the virus and cell culture demands are lower. We implemented a testing paradigm of counter-screens and secondary hit characterization assays that allowed us to identify and deprioritize hits that inhibited/disrupted AR-TIF2 PPIs and AR transcriptional activation (AR-TA) through antagonism of AR ligand binding or by non-specifically blocking nuclear receptor trafficking. Since AR-TIF2 PPI inhibitor/disruptor molecules act distally to AR ligand binding, they have the potential to modulate AR-TA in a cell-specific manner that is distinct from existing anti-androgen drugs, and to overcome the development of resistance to AR antagonism. We anticipate that the application of this testing paradigm to characterize the hits from an AR-TIF2 PPI high-content screening campaign will enable us to prioritize the AR-TIF2 PPI inhibitor/disruptor leads that have potential to be developed into novel therapeutics for CaP and CRPC.


Assuntos
Antineoplásicos/metabolismo , Técnicas Biossensoriais/métodos , Coativador 2 de Receptor Nuclear/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Antineoplásicos/análise , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Masculino , Coativador 2 de Receptor Nuclear/análise , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/fisiologia , Ensaio Radioligante/métodos , Receptores Androgênicos/análise
16.
PLoS One ; 11(1): e0145285, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26761439

RESUMO

Studies have demonstrated ways in which climate-related shifts in the distributions and relative abundances of marine species are expected to alter the dynamics and catch potential of global fisheries. While these studies assess impacts on large-scale commercial fisheries, few efforts have been made to quantitatively project impacts on small-scale subsistence and commercial fisheries that are economically, socially and culturally important to many coastal communities. This study uses a dynamic bioclimate envelope model to project scenarios of climate-related changes in the relative abundance, distribution and richness of 98 exploited marine fishes and invertebrates of commercial and cultural importance to First Nations in coastal British Columbia, Canada. Declines in abundance are projected for most of the sampled species under both the lower (Representative Concentration Pathway [RCP] 2.6) and higher (RCP 8.5) emission scenarios (-15.0% to -20.8%, respectively), with poleward range shifts occurring at a median rate of 10.3 to 18.0 km decade(-1) by 2050 relative to 2000. While a cumulative decline in catch potential is projected coastwide (-4.5 to -10.7%), estimates suggest a strong positive correlation between the change in relative catch potential and latitude, with First Nations' territories along the northern and central coasts of British Columbia likely to experience less severe declines than those to the south. Furthermore, a strong negative correlation is projected between latitude and the number of species exhibiting declining abundance. These trends are shown to be robust to alternative species distribution models. This study concludes by discussing corresponding management challenges that are likely to be encountered under climate change, and by highlighting the value of joint-management frameworks and traditional fisheries management approaches that could aid in offsetting impacts and developing site-specific mitigation and adaptation strategies derived from local fishers' knowledge.


Assuntos
Mudança Climática , Ecossistema , Pesqueiros , Animais , Biodiversidade , Modelos Teóricos , Especificidade da Espécie
17.
Assay Drug Dev Technol ; 13(9): 570-83, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26274587

RESUMO

Despite significant investments in cancer research and drug discovery/development, the rate of new cancer drug approval is ≤5% and most cases of metastatic cancer remain incurable. Ninety-five percent of new cancer drugs fail in clinical development because of a lack of therapeutic efficacy and/or unacceptable toxicity. One of the major factors responsible for the low success rate of anticancer drug development is the failure of preclinical models to adequately recapitulate the complexity and heterogeneity of human cancer. For throughput and capacity reasons, high-throughput screening growth inhibition assays almost exclusively use two-dimensional (2D) monolayers of tumor cell lines cultured on tissue culture-treated plastic/glass surfaces in serum-containing medium. However, these 2D tumor cell line cultures fail to recapitulate the three-dimensional (3D) context of cells in solid tumors even though the tumor microenvironment has been shown to have a profound effect on anticancer drug responses. Tumor spheroids remain the best characterized and most widely used 3D models; however, spheroid sizes tend to be nonuniform, making them unsuitable for high-throughput drug testing. To circumvent this challenge, we have developed defined size microwell arrays using nonadhesive hydrogels that are applicable to a wide variety of cancer cell lines to fabricate size-controlled 3D microtumors. We demonstrate that the hydrogel microwell array platform can be applied successfully to generate hundreds of uniform microtumors within 3-6 days from many cervical and breast, as well as head and neck squamous cell carcinoma (HNSCC) cells. Moreover, controlling size of the microwells in the hydrogel array allows precise control over the size of the microtumors. Finally, we demonstrate the application of this platform technology to probe activation as well as inhibition of epidermal growth factor receptor (EGFR) signaling in 3D HNSCC microtumors in response to EGF and cetuximab treatments, respectively. We believe that the ability to generate large numbers of HNSCC microtumors of uniform size and 3D morphology using hydrogel arrays will provide more physiological in vitro 3D tumor models to investigate how tumor size influences signaling pathway activation and cancer drug efficacy.


Assuntos
Técnicas de Cultura de Células/métodos , Sobrevivência Celular/fisiologia , Hidrogel de Polietilenoglicol-Dimetacrilato , Transdução de Sinais/fisiologia , Análise Serial de Tecidos/métodos , Microambiente Tumoral/fisiologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
18.
Endocrinology ; 156(2): 511-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406014

RESUMO

Glucocorticoids (GCs) are produced by the adrenal glands and circulate in the blood to coordinate organismal physiology. In addition, different tissues may independently regulate their local GC levels via local GC synthesis. Here, we find that in the mouse, endogenous GCs show tissue-specific developmental patterns, rather than mirroring GCs in the blood. Using solid-phase extraction, HPLC, and specific immunoassays, we quantified endogenous steroids and found that in tissues of female and male mice, (1) local GC levels can be much higher than systemic GC levels, (2) local GCs follow age-related patterns different from those of systemic GCs, and (3) local GCs have identities different from those of systemic GCs. For example, whereas corticosterone is the predominant circulating adrenal GC in mice, high concentrations of cortisol were measured in neonatal thymus, bone marrow, and heart. The presence of cortisol was confirmed with liquid chromatography-tandem mass spectrometry. In addition, gene expression of steroidogenic enzymes was detected across multiple tissues, consistent with local GC production. Our results demonstrate that local GCs can differ from GCs in circulating blood. This finding suggests that steroids are widely used as local (paracrine or autocrine) signals, in addition to their classic role as systemic (endocrine) signals. Local GC regulation may even be the norm, rather than the exception, especially during development.


Assuntos
Crescimento e Desenvolvimento , Esteroides/biossíntese , Animais , Medula Óssea/metabolismo , Encéfalo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Baço/metabolismo , Esteroides/sangue , Timo/metabolismo
19.
Gen Comp Endocrinol ; 212: 178-84, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24971804

RESUMO

Great efforts have been put forth to elucidate the mechanisms of the stress response in vertebrates and demonstrate the conserved response across different vertebrate groups, ranging from similarities in the activation of the hypothalamic-pituitary-adrenal axis to the release and role of corticosteroids. There is however, still very little known about stress physiology in the Pacific lamprey (Entosphenus tridentatus), descendants of the earliest vertebrate lineage, the agnathans. In this paper we demonstrate that 11-deoxycortisol, a steroid precursor to cortisol in the steroidogenic pathway, may be a functional corticosteroid in Pacific lamprey. We identified the putative hormone in Pacific lamprey plasma by employing an array of methods such as RIA, HPLC and mass spectrometry analysis. We demonstrated that plasma levels of 11-deoxycortisol significantly increased in Pacific lamprey 0.5 and 1 h after stress exposure and that lamprey corticotropin releasing hormone injections increased circulating levels of 11-deoxycortisol, suggesting that the stress response is under the control of the HPA/I axis as it is in higher vertebrates. A comprehensive understanding of vertebrate stress physiology may help shed light on the evolution of the corticosteroid signaling system within the vertebrate lineage.


Assuntos
Cortodoxona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Lampreias/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico , Hormônio Adrenocorticotrópico/administração & dosagem , Animais , Hormônio Liberador da Corticotropina/administração & dosagem , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos
20.
Gen Comp Endocrinol ; 196: 17-25, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24287339

RESUMO

In higher vertebrates, in response to stress, the hypothalamus produces corticotropin-releasing hormone (CRH), which stimulates cells in the anterior pituitary to produce adrenocorticotropic hormone (ACTH), which in turn stimulates production of either cortisol (F) or corticosterone (B) by the adrenal tissues. In lampreys, however, neither of these steroids is present. Instead, it has been proposed that the stress steroid is actually 17,21-dihydroxypregn-4-ene-3,20-dione (11-deoxycortisol; S). However, there have been no studies yet to determine its mechanism of regulation or site of production. Here we demonstrate that (1) intraperitoneal injections of lamprey-CRH increase plasma S in a dose dependent manner, (2) intraperitoneal injections of four lamprey-specific ACTH peptides at 100µg/kg, did not induce changes in plasma S concentrations in either males or females; (3) two lamprey-specific gonadotropin-releasing hormones (GnRH I and III) and arginine-vasotocin (AVT), all at single doses, stimulated S production as well as, or to an even greater extent than CRH; (4) sea lamprey mesonephric kidneys, in vitro, converted tritiated 17α-hydroxyprogesterone (17α-P) into a steroid that had the same chromatographic properties (on HPLC and TLC) as S; (5) kidney tissues released significantly more immunoassayable S into the incubation medium than gill, liver or gonad tissues. One interpretation of these results is that the corticosteroid production of the sea lamprey, one of the oldest extant vertebrates, is regulated through multiple pathways rather than the classical HPI-axis. However, the responsiveness of this steroid to the GnRH peptides means that a reproductive rather than a stress role for this steroid cannot yet be ruled out.


Assuntos
Corticosterona/sangue , Hormônio Liberador da Corticotropina/farmacologia , Cortodoxona/sangue , Hormônio Liberador de Gonadotropina/farmacologia , Hormônios/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Lampreias/metabolismo , Vasotocina/farmacologia , Hormônio Adrenocorticotrópico/farmacologia , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/sangue , Cromatografia em Camada Fina , Hormônio Liberador da Corticotropina/química , Relação Dose-Resposta a Droga , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Injeções Intraperitoneais , Masculino , Dados de Sequência Molecular , Radioimunoensaio , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...