Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 7: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069201

RESUMO

We report a novel variant in IKZF1 associated with IKAROS haploinsufficiency in a patient with familial immune thrombocytopenia (ITP). IKAROS, encoded by the IKZF1 gene, is a hematopoietic zinc-finger transcription factor that can directly bind to DNA. We show that the identified IKZF1 variant (p.His195Arg) alters a completely conserved histidine residue required for the folding of the third zinc-finger of IKAROS protein, leading to a loss of characteristic immunofluorescence nuclear staining pattern. In our case, genetic testing was essential for the diagnosis of IKAROS haploinsufficiency, of which known presentations include infections, aberrant hematopoiesis, leukemia, and age-related decrease in humoral immunity. Our family study underscores that, after infections, ITP is the second most common clinical manifestation of IKAROS haploinsufficiency.

3.
J Mol Biol ; 428(9 Pt A): 1776-89, 2016 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-27000644

RESUMO

We report the engineering of a new reversibly switching chromogenic protein, Dathail. Dathail was evolved from the extremely thermostable fluorescent proteins thermal green protein (TGP) and eCGP123 using directed evolution and ratiometric sorting. Dathail has two spectrally distinct chromogenic states with low quantum yields, corresponding to absorbance in a ground state with a maximum at 389nm, and a photo-induced metastable state with a maximum at 497nm. In contrast to all previously described photoswitchable proteins, both spectral states of Dathail are non-fluorescent. The photo-induced chromogenic state of Dathail has a lifetime of ~50min at 293K and pH7.5 as measured by UV-Vis spectrophotometry, returning to the ground state through thermal relaxation. X-ray crystallography provided structural insights supporting a change in conformation and coordination in the chromophore pocket as being responsible for Dathail's photoswitching. Neutron crystallography, carried out for the first time on a protein from the green fluorescent protein family, showed a distribution of hydrogen atoms revealing protonation of the chromophore 4-hydroxybenzyl group in the ground state. The neutron structure also supports the hypothesis that the photo-induced proton transfer from the chromophore occurs through water-mediated proton relay into the bulk solvent. Beyond its spectroscopic curiosity, Dathail has several characteristics that are improvements for applications, including low background fluorescence, large spectral separation, rapid switching time, and the ability to switch many times. Therefore, Dathail is likely to be extremely useful in the quickly developing fields of imaging and biosensors, including photochromic Förster resonance energy transfer, high-resolution microscopy, and live tracking within the cell.


Assuntos
Cor , Processos Fotoquímicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Cristalografia por Raios X , Evolução Molecular Direcionada , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/genética , Espectrofotometria , Temperatura , Fatores de Tempo
4.
PLoS One ; 10(4): e0123338, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923520

RESUMO

Phanta is a reversibly photoswitching chromoprotein (ΦF, 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (ΦF, 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low ΦF, indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in some His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 Å), eCGP123T69V (2.0 Å) and eCGP123H193Q (2.2 Å) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Substituição de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Fluorescência , Corantes Fluorescentes/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica
5.
Proteins ; 83(7): 1225-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25287913

RESUMO

In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.


Assuntos
Proteínas de Fluorescência Verde/química , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Amiloide/química , Bioensaio , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Eletricidade Estática
6.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2583-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286843

RESUMO

Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel ß-helix protein. Despite very low sequence identity to known ß-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding ß-helix proteins that share structural similarities with PLs. Importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/química , Cálcio/metabolismo , Celulose/metabolismo , Clonagem Molecular , Clostridium thermocellum/química , Clostridium thermocellum/metabolismo , Cristalografia por Raios X , Gadolínio/química , Modelos Moleculares , Polissacarídeo-Liases/química , Conformação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
7.
BMC Microbiol ; 13: 270, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24279426

RESUMO

BACKGROUND: Single cell genomics has revolutionized microbial sequencing, but complete coverage of genomes in complex microbiomes is imperfect due to enormous variation in organismal abundance and amplification bias. Empirical methods that complement rapidly improving bioinformatic tools will improve characterization of microbiomes and facilitate better genome coverage for low abundance microbes. METHODS: We describe a new approach to sequencing individual species from microbiomes that combines antibody phage display against intact bacteria with fluorescence activated cell sorting (FACS). Single chain (scFv) antibodies are selected using phage display against a bacteria or microbial community, resulting in species-specific antibodies that can be used in FACS for relative quantification of an organism in a community, as well as enrichment or depletion prior to genome sequencing. RESULTS: We selected antibodies against Lactobacillus acidophilus and demonstrate a FACS-based approach for identification and enrichment of the organism from both laboratory-cultured and commercially derived bacterial mixtures. The ability to selectively enrich for L. acidophilus when it is present at a very low abundance (<0.2%) leads to complete (>99.8%) de novo genome coverage whereas the standard single-cell sequencing approach is incomplete (<68%). We show that specific antibodies can be selected against L. acidophilus when the monoculture is used as antigen as well as when a community of 10 closely related species is used demonstrating that in principal antibodies can be generated against individual organisms within microbial communities. CONCLUSIONS: The approach presented here demonstrates that phage-selected antibodies against bacteria enable identification, enrichment of rare species, and depletion of abundant organisms making it tractable to virtually any microbe or microbial community. Combining antibody specificity with FACS provides a new approach for characterizing and manipulating microbial communities prior to genome sequencing.


Assuntos
Anticorpos Antibacterianos/metabolismo , Carga Bacteriana/métodos , Citometria de Fluxo/métodos , Lactobacillus acidophilus/isolamento & purificação , Microbiota , Análise de Sequência de DNA/métodos , Anticorpos de Cadeia Única/metabolismo , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/isolamento & purificação , Técnicas de Visualização da Superfície Celular , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/imunologia , Dados de Sequência Molecular , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/isolamento & purificação
8.
Microbiology (Reading) ; 158(Pt 2): 571-582, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22117006

RESUMO

Determining transcription factor (TF) recognition motifs or operator sites is central to understanding gene regulation, yet few operators have been characterized. In this study, we used a protein-binding microarray (PBM) to discover the DNA recognition sites and putative regulons for three TetR and one MarR family TFs derived from Burkholderia xenovorans, which are common to the genus Burkholderia. We also describe the development and application of a more streamlined version of the PBM technology that significantly reduced the experimental time. Despite the genus containing many pathogenically important species, only a handful of TF operator sites have been experimentally characterized for Burkholderia to date. Our study provides a significant addition to this knowledge base and illustrates some general challenges of discovering operators on a large scale for prokaryotes.


Assuntos
Proteínas de Bactérias/genética , Burkholderia/genética , Regiões Operadoras Genéticas , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Burkholderia/química , Burkholderia/classificação , Burkholderia/metabolismo , Dados de Sequência Molecular , Família Multigênica , Filogenia , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...