Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 103(12): e3828, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35861103

RESUMO

When herbivore abundance is controlled by predators there may be an indirect positive effect on primary producers due to reduced grazing pressure, but the potential of predation refuges to modify such trophic cascades has rarely been studied. By experimentally manipulating substrate particle size and fish predation regime, we assessed the outcome of invertebrate grazer-biofilm interactions in streams. Locations at the center of larger substrate particles were predicted to pose a higher predation risk, and therefore be subjected to a lower grazing pressure. In our 52-day experiment in a New Zealand stream, small-sized substrates (terracotta tiles) remained virtually free of periphyton across their entire upper surface, whereas a thick periphyton mat was formed across large tiles with only edges remaining free. In channels containing fish (either native Galaxias vulgaris or exotic Salmo trutta), grazing on tiles was lower than in the absence of fish. A preference for grazing near to the edge of tiles was clearest in fish channels but was also evident even in the absence of fish, probably reflecting fish presence and/or fish kairomones in the stream from where the colonizing invertebrates had been derived. Total grazer density was similar across treatments with or without fish, suggesting that our results can be explained mostly by changes in the behavior of grazers. We suggest that refuge availability, interacting with grazer predator-avoidance behavior, may produce a context-dependent patchwork of trophic cascades in streams and other ecosystems.


Assuntos
Ecossistema , Rios , Animais , Invertebrados , Truta , Biofilmes
2.
Environ Manage ; 65(6): 804-817, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222781

RESUMO

The integrity of freshwater ecosystems worldwide is under threat from agriculture and invasive species. Past agricultural activity can have persistent effects on aquatic diversity even decades after restoration, and the spread of invasive species is increasingly difficult to prevent due to globalisation. In the South Island of New Zealand, the invasive diatom Didymosphenia geminata (Didymo) causes nuisance blooms in streams. The impact of Didymo on stream invertebrate communities in upland streams with natural flow regimes remains poorly understood. We investigated the relationships between legacy effects of agriculture, Didymo and benthic invertebrate communities at 55 stream sites in Mahu Whenua, a 530 km2 conservation area comprising four former New Zealand high-country farms. The farms were destocked of sheep 4-9 years before stream sampling started. Kick-netting was used to collect macroinvertebrates from 7-23 streams within each farm to provide a land-use legacy gradient. Moreover, samples from 16 sites with clearly visible Didymo mats covering most of the stream bed (indicating high biomass and a dominant role in the biofilm) were compared with 39 sites without such Didymo mats. Total invertebrate taxon richness and EPT richness (taxon richness of larval mayflies, stoneflies and caddisflies) were lower in the stream catchments destocked most recently. When Didymo was present, relative EPT abundance was lower than when Didymo was absent, and Deleatidium mayflies decreased whereas midges and oligochaetes increased. These results highlight the need to look at past land-use practices when restoring high-country streams after agricultural impacts. They also show that Didymo can have negative effects on invertebrate communities in upland streams with natural flow regimes, a stream type previously overlooked in studies on this invasive diatom.


Assuntos
Diatomáceas , Ephemeroptera , Agricultura , Animais , Ecossistema , Monitoramento Ambiental , Insetos , Invertebrados , Nova Zelândia , Rios , Ovinos
3.
Environ Pollut ; 219: 253-261, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27814542

RESUMO

Concentrations of halogenated pesticides in freshwater fish can be affected by age, size, trophic position, and exposure history. Exposure history may vary for individual fish caught at a single location due to different life histories, e.g. they may have hatched in different tributaries before migrating to a specific lake. We evaluated correlations of pesticide concentrations in freshwater brown trout (Salmo trutta) from the Clutha River, New Zealand, with potential predictors including capture site, age, length, trophic level, and life history. Life history was determined from otolith (fish ear bone) strontium isotope signatures, which vary among tributaries in the region of our study. Variability in pesticide concentrations between individual fish was not well explained by capture site, age, length, or trophic level. However, hexachlorobenzene (HCB) and chlorpyrifos concentrations were distinct in lake-based trout with different life histories. Additionally, one of the riverine life histories was associated with relatively high concentrations of total endosulfans. Linear models that included all potential predictor variables were evaluated and the resulting best models for HCB, chlorpyrifos, and total endosulfans included life history. These findings show that in cases where otolith isotope signatures vary geographically, they can be used to help explain contaminant concentration variations in fish caught from a single location.


Assuntos
Água Doce , Praguicidas/análise , Truta/crescimento & desenvolvimento , Truta/metabolismo , Poluentes Químicos da Água/análise , Animais , Endossulfano/análise , Monitoramento Ambiental , Água Doce/química , Hexaclorobenzeno/análise , Estágios do Ciclo de Vida , Nova Zelândia , Membrana dos Otólitos/química , Praguicidas/metabolismo , Rios/química , Isótopos de Estrôncio/análise , Truta/anatomia & histologia , Poluentes Químicos da Água/metabolismo
4.
Q Rev Biol ; 90(1): 23-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26434164

RESUMO

Environmental sex reversal (ESR), which results in a mismatch between genotypic and phenotypic sex, is well documented in numerous fish species and may be induced by chemical exposure. Historically, research involving piscine ESR has been carried out with a view to improving profitability in aquaculture or to elucidate the processes governing sex determination and sexual differentiation. However, recent studies in evolution and ecology suggest research on ESR now has much wider applications and ramifications. We begin with an overview of ESR in fish and a brief review of the traditional applications thereof. We then discuss ESR and its potential demographic consequences in wild populations. Theory even suggests sex-reversed fish may be purposefully released to manipulate population dynamics. We suggest new research directions that may prove fruitful in understanding how ESR at the individual level translates to population-level processes. In the latter portion of the review we focus on evolutionary applications of ESR. Sex-reversal studies from the aquaculture literature provide insight in to the evolvability of determinants of sexual phenotype. Additionally, induced sex reversal can provide information about the evolution of sex chromosomes and sex-linked traits. Recently, naturally occurring ESR has been implicated as a mechanism contributing to the evolution of sex chromosomes.


Assuntos
Evolução Biológica , Ecossistema , Peixes/fisiologia , Processos de Determinação Sexual/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Animais , Feminino , Peixes/genética , Genótipo , Masculino , Fenótipo , Dinâmica Populacional , Reprodução , Cromossomos Sexuais
6.
Oecologia ; 176(3): 771-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25159213

RESUMO

The availability of food, and hence energy, is known to influence the abundance, habitat choice and growth of individuals. In contrast, there is a paucity of knowledge on how the interaction of energy supply and social status determines patterns of residency and movement. This study tests whether the presence of conspecifics and an individual's social status in relation to food supply influence the fitness and movement of a drift-feeding fish (Galaxias fasciatus). Using an information-theoretic approach (AIC), our analysis indicated that the most parsimonious model of fish movement among pools was one that included food supply, social rank and fish relative growth rate. Our results indicated that subordinate fish relocated more frequently compared to dominant fish, most likely as a consequence of intra-specific competition that limited the access of these smaller fish to resources and constrained their growth. Our results suggest that energy constraints may force individuals to explore new habitats in an effort to find more energetically profitable patches. We conclude that intra-specific competition mediated through the social hierarchy amongst closely interacting individuals plays a key role in determining individual growth, residency and relocation.


Assuntos
Movimento , Osmeriformes/fisiologia , Predomínio Social , Meio Social , Animais , Nova Zelândia , Osmeriformes/crescimento & desenvolvimento
7.
Oecologia ; 169(4): 955-63, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22271201

RESUMO

Parasite avoidance is increasingly considered to be a potential driving factor in animal migrations. In many marine and freshwater benthic fish, migration into a pelagic environment by developing larvae is a common life history trait that could reduce exposure to parasites during a critical window of developmental susceptibility. We tested this hypothesis on congeneric fish (family Galaxiidae, genus Galaxias) belonging to a closely related species complex sampled from coastal streams in southeastern New Zealand. Migratory Galaxias have larvae that migrate to pelagic marine environments, whereas the larvae of non-migratory species rear close to adult habitats with no pelagic larval phase. Both migratory and non-migratory fish are hosts to two species of skin-penetrating trematodes that cause spinal malformations and high mortality in young fish. Using generalized linear models within an Akaike information criterion and model averaging framework, we compared infection levels between migratory and non-migratory fish while taking into account body size and several other local factors likely to influence infection levels. For one trematode species, we found a significant effect of migration: for any given body length, migratory fish harboured fewer parasites than non-migratory fish. Also, no parasites of any kind were found in juvenile migratory fish sampled in spring shortly after their return to stream habitats. Our results demonstrate that migration spares juvenile fish from the debilitating parasites to which they would be exposed in adult stream habitats. Therefore, either the historical adoption of a migratory strategy in some Galaxias was an adaptation against parasitism, or it evolved for other reasons and now provides protection from infection as a coincidental side-effect.


Assuntos
Migração Animal/fisiologia , Osmeriformes/parasitologia , Infecções por Trematódeos/veterinária , Adaptação Fisiológica , Animais , Tamanho Corporal , Doenças dos Peixes/parasitologia , Larva , Nova Zelândia , Estações do Ano , Trematódeos/patogenicidade
8.
J Insect Sci ; 10: 108, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20874395

RESUMO

The use of morphospecies as surrogates for taxonomic species has been proposed as an alternative to overcome the identification difficulties associated with many invertebrate studies, such as biodiversity surveys. Hymenoptera specimens were collected by beating and pitfall traps, and were separated into morphospecies by a non-specialist with no prior training, and later identified by an expert taxonomist. The number of Hymenoptera morphospecies and taxonomic species was 37 and 42, respectively, representing an underestimation error of 12%. Different families presented varying levels of difficulty, and although the species estimation provided by the use of morphospecies initially appeared to have a relatively minor error rate, this was actually an artefact. Splitting and lumping errors balanced each other out, wrongly suggesting that morphospecies were reasonable surrogates for taxonomic species in the Hymenoptera. The use of morphospecies should be adopted only for selected target groups, which have been assessed as reliable surrogates for taxonomic species beforehand, and some prior training to the non-specialist is likely to be of primary importance.


Assuntos
Himenópteros/classificação , Animais , Biodiversidade , Himenópteros/anatomia & histologia , Nova Zelândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...