Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(19): 194103, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597662

RESUMO

Eigenvectors of the reduced Bardeen-Cooper-Schrieffer (BCS) Hamiltonian, Richardson-Gaudin (RG) states, are used as a variational wavefunction ansatz for strongly correlated electronic systems. These states are geminal products whose coefficients are solutions of non-linear equations. Previous results showed an un-physical apparent avoided crossing in ground state dissociation curves for hydrogen chains. In this paper, it is shown that each seniority-zero state of the molecular Coulomb Hamiltonian corresponds directly to an RG state. However, the seniority-zero ground state does not correspond to the ground state of a reduced BCS Hamiltonian. The difficulty is in choosing the correct RG state. The systems studied showed a clear choice, and we expect that it should always be possible to reason physically which state to choose.

2.
J Chem Phys ; 154(12): 124125, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810647

RESUMO

Recently, ground state eigenvectors of the reduced Bardeen-Cooper-Schrieffer (BCS) Hamiltonian, Richardson-Gaudin (RG) states, have been employed as a wavefunction ansatz for strong correlation. This wavefunction physically represents a mean-field of pairs of electrons (geminals) with a constant pairing strength. To move beyond the mean-field, one must develop the wavefunction on the basis of all the RG states. This requires both practical expressions for transition density matrices and an idea of which states are most important in the expansion. In this contribution, we present expressions for the transition density matrix elements and calculate them numerically for half-filled picket-fence models (reduced BCS models with constant energy spacing). There are no Slater-Condon rules for RG states, though an analog of the aufbau principle proves to be useful in choosing which states are important.

3.
J Chem Phys ; 153(16): 164117, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138426

RESUMO

Eigenvectors of the reduced Bardeen-Cooper-Schrieffer Hamiltonian have recently been employed as a variational wavefunction ansatz in quantum chemistry. This wavefunction is a mean-field of pairs of electrons (geminals). In this contribution, we report optimal expressions for their reduced density matrices in both the original physical basis and the basis of the Richardson-Gaudin pairs. Physical basis expressions were originally reported by Gorohovsky and Bettelheim [Phys. Rev. B 84, 224503 (2011)]. In each case, the expressions scale like O(N4), with the most expensive step being the solution of linear equations. Analytic gradients are also reported in the physical basis. These expressions are an important step toward practical mean-field methods to treat strongly correlated electrons.

4.
J Chem Phys ; 153(10): 104110, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933287

RESUMO

Ground state eigenvectors of the reduced Bardeen-Cooper-Schrieffer Hamiltonian are employed as a wavefunction Ansatz to model strong electron correlation in quantum chemistry. This wavefunction is a product of weakly interacting pairs of electrons. While other geminal wavefunctions may only be employed in a projected Schrödinger equation, the present approach may be solved variationally with polynomial cost. The resulting wavefunctions are used to compute expectation values of Coulomb Hamiltonians, and we present results for atoms and dissociation curves that are in agreement with doubly occupied configuration interaction data. The present approach will serve as the starting point for a many-body theory of pairs, much as Hartree-Fock is the starting point for weakly correlated electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...