Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(18): 20454-20466, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737035

RESUMO

This study investigates the kinetics of salt mixture crystallization under relative humidity (RH) conditions, varying between 15 and 95% (at 20 °C), to inform applications in built heritage preservation, geology, and environmental sciences. We focused on commonly found, sulfate-rich and calcium-rich salt mixtures containing five to six ions, Cl-, NO3-, Na+, and K+, including or excluding less common Mg2+, and including either an excess of SO42- or Ca2+, with respect to gypsum. Using time-lapse micrographs and dynamic vapor sorption, we explore how crystallization and dissolution behavior depend on RH and mixture composition under constant temperature. A range of RH change rates were studied to simulate realistic weather events. Microstructural analyses through environmental scanning electron microscopy (ESEM) confirmed the crystal habit corresponding with RH transitions. Phases predicted from thermodynamic modeling (ECOS/RUNSALT) were confirmed using micro-Raman spectroscopy, X-ray diffraction (XRD), and elemental mapping via energy-dispersive X-ray spectroscopy (EDX). We identify a strong correlation between phase transition kinetics and RH change rates, with crystallization deviating by -15% and dissolution by +7% from modeled values under rapid (several seconds) and slow (several days) RH changes. These insights are important for preservation strategies in built heritage, salt deposition, and dissolution mechanisms in diverse geological and realistic environmental contexts, laboratory experiments, future modeling efforts, and the understanding of stone decay in general.

2.
Proc Natl Acad Sci U S A ; 121(12): e2316723121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478686

RESUMO

Many environmental and industrial processes depend on how fluids displace each other in porous materials. However, the flow dynamics that govern this process are still poorly understood, hampered by the lack of methods to measure flows in optically opaque, microscopic geometries. We introduce a 4D microvelocimetry method based on high-resolution X-ray computed tomography with fast imaging rates (up to 4 Hz). We use this to measure flow fields during unsteady-state drainage, injecting a viscous fluid into rock and filter samples. This provides experimental insight into the nonequilibrium energy dynamics of this process. We show that fluid displacements convert surface energy into kinetic energy. The latter corresponds to velocity perturbations in the pore-scale flow field behind the invading fluid front, reaching local velocities more than 40 times faster than the constant pump rate. The characteristic length scale of these perturbations exceeds the characteristic pore size by more than an order of magnitude. These flow field observations suggest that nonlocal dynamic effects may be long-ranged even at low capillary numbers, impacting the local viscous-capillary force balance and the representative elementary volume. Furthermore, the velocity perturbations can enhance unsaturated dispersive mixing and colloid transport and yet, are not accounted for in current models. Overall, this work shows that 4D X-ray velocimetry opens the way to solve long-standing fundamental questions regarding flow and transport in porous materials, underlying models of, e.g., groundwater pollution remediation and subsurface storage of CO2 and hydrogen.

3.
Sci Data ; 11(1): 78, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228647

RESUMO

The present work investigates the effect of both surface roughness and particle morphology on the retention behaviour of granular materials via X-ray micro-computed tomography (µCT) observations. X-ray µCT images were taken on two types of spherical glass beads (i.e. smooth and rough) and two different sands (i.e. natural and roughened). Each sample was subjected to drainage and soaking paths consisting in a multiphase 'static' flow of potassium iodine (KI) brine (wetting phase) and dry air (non-wetting phase). Tomograms were obtained at different saturation states ranging from fully brine saturated to air dry conditions with 6.2 µm voxel size resolution. The data acquisition and pre-processing are here described while all data, a total of 48 tomograms, are made publicly available. The combined dataset offers new opportunities to study the influence of surface roughness and particle morphology on capillary actions as well as supporting validation of pore-scale models of multiphase flow in granular materials.

4.
Energy Fuels ; 37(23): 18713-18721, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38094911

RESUMO

Understanding multiphase fluid displacement dynamics in porous media is of great importance in efficiently designing hydrogen storage projects in porous reservoirs. During gas injection and extraction, cyclic evaporation and spontaneous imbibition processes have an impact on storage efficiency. In both imbibition and evaporation, capillary films on the surface of grains play a role in the transport of water through the pore space. In this study, we use atomic force microscopy to study the formation of these films in carbonate rock during imbibition and their dynamic behavior during evaporation. The imbibition dynamics are related to pore-scale processes determined by micro-CT experiments. We find that imbibition through the mesoporous structure of the grains is slower compared to imbibition in macropores. The formation of the water film on the outer grains is also slower, indicating that a film is evolving due to water flow through intragranular mesopores rather than film flow around the grains. Evaporation experiments reveal that the film shows both local swelling and shrinkage behavior, which we relate to pore-scale processes causing disconnection of the water film. Our results show the close relationship between pore-scale processes and water film dynamics during both spontaneous imbibition and evaporation. This work forms a basis for a more quantitative study of the impact of pore structure on wetting and drying dynamics and can be extended to reactive flow processes.

5.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960475

RESUMO

Modern infrastructure heavily relies on robust concrete structures, underscoring the critical need for effective monitoring to ensure their safety and durability. This paper addresses this imperative issue by introducing an innovative automated and wireless system for continuous structural monitoring. By employing embedded electrical resistivity sensors coupled with a wireless-based data transmission mechanism, real-time data collection becomes feasible. We provide a general description of the system's architecture and its application in a pilot study covering the effects of the devices on concrete properties and data transmission. The dielectric properties of concrete specimens were investigated under natural and accelerated curing/degradation and the results were used in the final design of the antenna device. Furthermore, a pilot test comprising four reinforced concrete columns was used to investigate the range of data transmission from inside to outside of the concrete, the effects of the hardware device on the compressive strength and concrete distribution in the columns, and the data transmission quality in real time under realistic exposure conditions.

6.
Sci Rep ; 13(1): 13306, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587170

RESUMO

Salt related weathering of stones has been attributed to pressures exerted by repeated cycles of crystallization within pores. Relative Humidity (RH) is a key driver for dissolution and crystallization processes. Despite the prevalence of salt mixtures in natural environments, most experimental work has focused on single salts. Thus, the identification of salt mixture composition and their behavior is necessary to understand weathering. Thermodynamic calculations are used to analyze several thousand realistic salt mixtures found in weathered stone. We identify two common mixture types and their behavior. From at least 85 salt species theoretically present, 14 common salts are identified that occur most frequently and their critical RH points are discussed. These findings have wide-reaching implications for understanding salt weathering processes and informing the design of experimental stone weathering research.

7.
Pharmaceuticals (Basel) ; 16(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242516

RESUMO

Solid dosage forms such as tablets are extensively used in drug administration for their simplicity and large-scale manufacturing capabilities. High-resolution X-ray tomography is one of the most valuable non-destructive techniques to investigate the internal structure of the tablets for drug product development as well as for a cost effective production process. In this work, we review the recent developments in high-resolution X-ray microtomography and its application towards different tablet characterizations. The increased availability of powerful laboratory instrumentation, as well as the advent of high brilliance and coherent 3rd generation synchrotron light sources, combined with advanced data processing techniques, are driving the application of X-ray microtomography forward as an indispensable tool in the pharmaceutical industry.

8.
J Imaging ; 8(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36286376

RESUMO

Mineral building materials suffer from weathering processes such as salt efflorescence, freeze-thaw cycling, and microbial colonization. All of these processes are linked to water (liquid and vapor) in the pore space. The degree of damage following these processes is heavily influenced by pore space properties such as porosity, pore size distribution, and pore connectivity. X-ray computed micro-tomography (µCT) has proven to be a valuable tool to non-destructively investigate the pore space of stone samples in 3D. However, a trade-off between the resolution and field-of-view often impedes reliable conclusions on the material's properties. X-ray dark-field imaging (DFI) is based on the scattering of X-rays by sub-voxel-sized features, and as such, provides information on the sample complementary to that obtained using conventional µCT. In this manuscript, we apply X-ray dark-field tomography for the first time on four mineral building materials (quartzite, fired clay brick, fired clay roof tile, and carbonated mineral building material), and investigate which information the dark-field signal entails on the sub-resolution space of the sample. Dark-field tomography at multiple length scale sensitivities was performed at the TOMCAT beamline of the Swiss Light Source (Villigen, Switzerland) using a Talbot grating interferometer. The complementary information of the dark-field modality is most clear in the fired clay brick and roof tile; quartz grains that are almost indistinguishable in the conventional µCT scan are clearly visible in the dark-field owing to their low dark-field signal (homogenous sub-voxel structure), whereas the microporous bulk mass has a high dark-field signal. Large (resolved) pores on the other hand, which are clearly visible in the absorption dataset, are almost invisible in the dark-field modality because they are overprinted with dark-field signal originating from the bulk mass. The experiments also showed how the dark-field signal from a feature depends on the length scale sensitivity, which is set by moving the sample with respect to the grating interferometer.

9.
Sci Data ; 9(1): 324, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715411

RESUMO

Understanding salt mixtures in the built environment is crucial to evaluate damage phenomena. This contribution presents charge balance calculations applied to a dataset of 11412 samples taken from 338 sites, building materials showing signs of salt deterioration. Each sample includes ion concentrations of Na+, K+, Mg2+, Ca2+, Cl-, NO3-, and SO42- adjusted to reach charge balance for data evaluation. The calculation procedure follows two distinct pathways: i) an equal adjustment of all ions, ii) adjustments to the cations in sequence related to the solubility of the theoretical solids. The procedure applied to the dataset illustrates the quantification of salt mixture compositions and highlights the extent of adjustments applied in relation to the sample mass to aid interpretation. The data analysis allows the identification of theoretical carbonates that could influence the mixture behavior. Applying the charge balance calculations to the dataset validated common ions found in the built environment and the identification of three typical mixture compositions. Additionally, the data can be used as direct input for thermodynamic modeling.

10.
Langmuir ; 38(5): 1680-1688, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35077183

RESUMO

The mathematical models for the capillary-driven flow of fluids in tubes typically assume a static contact angle at the fluid-air contact line on the tube walls. However, the dynamic evolution of the fluid-air interface is an important feature during capillary rise. Furthermore, inertial effects are relevant at early times and may lead to oscillations. To incorporate and quantify the different effects, a fundamental description of the physical processes within the tube is used to derive an upscaled model of capillary-driven flow in circular cylindrical tubes. The upscaled model extends the classical Lucas-Washburn model by incorporating a dynamic contact angle and slip. It is then further extended to account for inertial effects. Finally, the solutions of the different models are compared to experimental data. In contrast to the Lucas-Washburn model, the models with dynamic contact angle match well the experimental data, both the rise height and the contact angle, even at early times. The models have a free parameter through the dynamic contact angle description, which is fitted using the experimental data. The findings here suggest that this parameter depends only on the properties of the fluid but is independent of geometrical features, such as the tube radius. Therefore, the presented models can predict the capillary-driven flow in tubular systems upon knowledge of the underlying dynamic contact-angle relation.

11.
Materials (Basel) ; 14(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34683531

RESUMO

In this study, the microstructure of mock-up mortar specimens for a historic environment, composed of different mixtures, was studied using mercury intrusion porosity (MIP) and microcomputed tomography (µCT), highlighting the advantages and drawbacks of both techniques. Porosity, sphericity, and pores size distribution were studied, evaluating changes according to mortar composition (aerial and hydraulic binders, quartz sand, and crushed limestone aggregate). The µCT results were rendered using 3D visualization software, which provides complementary information for the interpretation of the data obtained using 3D data-analysis software. Moreover, µCT contributes to the interpretation of MIP results of mortars. On the other hand, MIP showed significant ink-bottle effects in lime and cement mortars samples that should be taken into account when interpreting the results. Moreover, the MIP results highlighted how gypsum mortar samples display a porosity distribution that is best studied using this technique. This multi-analytical approach provides important insights into the interpretation of the porosimetric data obtained. This is crucial in the characterization of mortars and provides key information for the study of building materials and cultural heritage conservation.

12.
Sci Rep ; 11(1): 18446, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531486

RESUMO

X-ray computed micro-tomography typically involves a trade-off between sample size and resolution, complicating the study at a micrometer scale of representative volumes of materials with broad feature size distributions (e.g. natural stones). X-ray dark-field tomography exploits scattering to probe sub-resolution features, promising to overcome this trade-off. In this work, we present a quantification method for sub-resolution feature sizes using dark-field tomograms obtained by tuning the autocorrelation length of a Talbot grating interferometer. Alumina particles with different nominal pore sizes (50 nm and 150 nm) were mixed and imaged at the TOMCAT beamline of the SLS synchrotron (PSI) at eighteen correlation lengths, covering the pore size range. The different particles cannot be distinguished by traditional absorption µCT due to their very similar density and the pores being unresolved at typical image resolutions. Nevertheless, by exploiting the scattering behavior of the samples, the proposed analysis method allowed to quantify the nominal pore sizes of individual particles. The robustness of this quantification was proven by reproducing the experiment with solid samples of alumina, and alumina particles that were kept separated. Our findings demonstrate the possibility to calibrate dark-field image analysis to quantify sub-resolution feature sizes, allowing multi-scale analyses of heterogeneous materials without subsampling.

13.
Materials (Basel) ; 14(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071472

RESUMO

The microstructure of alkali-reactive aggregates, especially the spatial distribution of the pore and reactive silica phase, plays a significant role in the process of the alkali silica reaction (ASR) in concrete, as it determines not only the reaction front of ASR but also the localization of the produced expansive product from where the cracking begins. However, the microstructure of the aggregate was either simplified or neglected in the current ASR simulation models. Due to the various particle sizes and heterogeneous distribution of the reactive silica in the aggregate, it is difficult to obtain a representative microstructure at a desired voxel size by using non-destructive computed tomography (CT) or focused ion beam milling combined with scanning electron microscopy (FIB-SEM). In order to fill this gap, this paper proposed a model that simulates the microstructures of the alkali-reactive aggregate based on 2D images. Five representative 3D microstructures with different pore and quartz fractions were simulated from SEM images. The simulated fraction, scattering density, as well as the autocorrelation function (ACF) of pore and quartz agreed well with the original ones. A 40×40×40 mm3 concrete cube with irregular coarse aggregates was then simulated with the aggregate assembled by the five representative microstructures. The average pore (at microscale µm) and quartz fractions of the cube matched well with the X-ray diffraction (XRD) and Mercury intrusion porosimetry (MIP) results. The simulated microstructures can be used as a basis for simulation of the chemical reaction of ASR at a microscale.

14.
Materials (Basel) ; 14(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923267

RESUMO

The applications of polymeric sponges are varied, ranging from cleaning and filtration to medical applications. The specific properties of polymeric foams, such as pore size and connectivity, are dependent on their constituent materials and production methods. Nuclear magnetic resonance imaging (MRI) and X-ray micro-computed tomography (µCT) offer complementary information about the structure and properties of porous media. In this study, we employed MRI, in combination with µCT, to characterize the structure of polymeric open-cell foam, and to determine how it changes upon compression, µCT was used to identify the morphology of the pores within sponge plugs, extracted from polyurethane open-cell sponges. MRI T2 relaxation maps and bulk T2 relaxation times measurements were performed for 7° dH water contained within the same polyurethane foams used for µCT. Magnetic resonance and µCT measurements were conducted on both uncompressed and 60% compressed sponge plugs. Compression was achieved using a graduated sample holder with plunger. A relationship between the average T2 relaxation time and maximum opening was observed, where smaller maximum openings were found to have a shorter T2 relaxation times. It was also found that upon compression, the average maximum opening of pores decreased. Average pore size ranges of 375-632 ± 1 µm, for uncompressed plugs, and 301-473 ± 1 µm, for compressed plugs, were observed. By determining maximum opening values and T2 relaxation times, it was observed that the pore structure varies between sponges within the same production batch, as well as even with a single sponge.

15.
Anal Chem ; 93(8): 3898-3904, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600170

RESUMO

A laboratory-based X-ray fluorescence (XRF) methodology is presented for standardless quantified analysis based on a monochromatic X-ray spectrometer coupled to Monte Carlo aided quantification. This procedure will be valuable for many scientific fields (e.g. archaeology, geology, etc.) where the unique nature of the investigated samples calls for the application of non-destructive techniques. To illustrate the value of the methodology, a case study is presented where flint artefacts from the Scheldt basin are analyzed in an attempt to provenance them. So far, little geochemical research has been done in this area. Our results contribute to the creation of a database that will help assign lithic artefacts to specific geological outcrops and will aid further research in this field.

16.
Sci Data ; 8(1): 18, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473137

RESUMO

Solute transport processes are influenced by pore-scale heterogeneity. To study this, transient micron-scale solute concentration fields were imaged by fast laboratory-based X-ray micro-computed tomography. We performed tracer injection experiments in three types of porous material with increasing levels of heterogeneity (sintered glass, Bentheimer sandstone and Savonnières limestone). Different Peclet numbers were used during the experiments. For each sample and Peclet number, datasets of 40 to 74 3D images were acquired by continuous scanning with a voxel size of 13.4 to 14.6 µm and a temporal resolution of 15 to 12 seconds. To determine the measurement uncertainty on the obtained concentration fields, we performed calibration experiments under similar circumstances (temporal resolution of 12 seconds and voxel size of 13.0 µm). Here, we provide a systematic description of the data acquisition and processing and make all data, a total of 464 tomograms, publicly available. The combined dataset offers new opportunities to study the influence of pore-scale heterogeneity on solute transport, and to validate pore-scale simulations of this process in increasingly complex samples.

17.
Sci Rep ; 11(1): 370, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432019

RESUMO

Degradability of organic matter (OM) in soil depends on its spatial location in the soil matrix. A recent breakthrough in 3D-localization of OM combined dual-energy X-ray CT-scanning with OsO4 staining of OM. The necessity for synchrotron-based µCT and the use of highly toxic OsO4 severely limit applications in soil biological experiments. Here, we evaluated the potential of alternative staining agents (silver nitrate, phosphomolybdenic acid (PMA), lead nitrate, lead acetate) to selectively enhance X-ray attenuation and contrast of OM in CT volumes of soils containing specific mineral soil particle fractions, obtained via lab-based X-ray µCT. In comparison with OsO4, administration of Ag+ and Pb2+ resulted in insufficient contrast enhancement of OM versus fine silt (< 20 µm) or clay (< 2 µm) mineral particles. The perfusion procedure used in this work induced changes in soil structure. In contrast, PMA staining resulted in a selective increase of OM's attenuation contrast, which was comparable to OsO4. However, OM discrimination from other soil phases remained a challenge. Further development of segmentation algorithms accounting for grey value patterns and shape of stained particulate OM may enable its automated identification. If successful in undisturbed soils, PMA staining may form an alternative to OsO4 in non-synchrotron based POM detection.

18.
Sci Total Environ ; 733: 139339, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446079

RESUMO

Air pollution is one of the main actors of stone deterioration. It influences not only the material itself but also prokaryotes colonizing rocks. Prokaryotes can affect rock substrates and biological colonization will most likely become relatively more important during the course of the 21st century. Therefore, it is necessary to understand the effects of air pollution on biological colonization and on the impact of this colonization on rock weathering. For this reason, we studied the prokaryotic community of Lede stone from two deteriorated monuments in Belgium: one in the urban and one in the rural environment. This research conducts 16S rRNA gene Next Generation Sequencing combined with an isolation campaign. It revealed diverse and complex prokaryotic communities with more specialized bacteria present in the urban environment, while archaea were barely detected. Some genera could cause biodeterioration but the isolates did not produce a significant amount of acid. Soluble salts analysis revealed an important effect of salts on the prokaryotic community. Colour measurements at least indicate that a main effect of prokaryotes might be on the aesthetics: In the countryside prokaryotic communities seemed to discolour Lede stone, while pollution most likely blackened building stones in the urban environment.


Assuntos
Microbiota , Archaea , Bélgica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S
19.
J Colloid Interface Sci ; 572: 354-363, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32259728

RESUMO

HYPOTHESIS: Capillary-dominated multiphase flow in porous materials is strongly affected by the pore walls' wettability. Recent micro-computed tomography (mCT) studies found unexpectedly wide contact angle distributions measured on static fluid distributions inside the pores. We hypothesize that analysis on time-resolved mCT data of fluid invasion events may be more directly relevant to the fluid dynamics. EXPERIMENT: We approximated receding contact angles locally in time and space on time-resolved mCT datasets of drainage in a glass bead pack and a limestone. Whenever a meniscus suddenly entered one or more pores, geometric and thermodynamically consistent contact angles in the surrounding pores were measured in the time step just prior to the displacement event. We introduced a new force-based contact angle, defined to recover the measured capillary pressure in the invaded pore throat prior to interface movement. FINDINGS: Unlike the classical method, the new geometric and force-based contact angles followed plausible, narrower distributions and were mutually consistent. We were unable to obtain credible results with the thermodynamically consistent method, likely because of sensitivity to common imaging artifacts and neglecting dissipation. Time-resolved mCT analysis can yield a more appropriate wettability characterization for pore scale models, despite the need to further reduce image analysis uncertainties.

20.
Materials (Basel) ; 12(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527419

RESUMO

Three-dimensional concrete printing (3DCP) has progressed rapidly in recent years. With the aim to realize both buildings and civil works without using any molding, not only has the need for reliable mechanical properties of printed concrete grown, but also the need for more durable and environmentally friendly materials. As a consequence of super positioning cementitious layers, voids are created which can negatively affect durability. This paper presents the results of an experimental study on the relationship between 3DCP process parameters and the formed microstructure. The effect of two different process parameters (printing speed and inter-layer time) on the microstructure was established for fresh and hardened states, and the results were correlated with mechanical performance. In the case of a higher printing speed, a lower surface roughness was created due to the higher kinetic energy of the sand particles and the higher force applied. Microstructural investigations revealed that the amount of unhydrated cement particles was higher in the case of a lower inter-layer interval (i.e., 10 min). This phenomenon could be related to the higher water demand of the printed layer in order to rebuild the early Calcium-Silicate-Hydrate (CSH) bridges and the lower amount of water available for further hydration. The number of pores and the pore distribution were also more pronounced in the case of lower time intervals. Increasing the inter-layer time interval or the printing speed both lowered the mechanical performance of the printed specimens. This study emphasizes that individual process parameters will affect not only the structural behavior of the material, but they will also affect the durability and consequently the resistance against aggressive chemical substances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...