Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 9(39): 25503-25516, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29876004

RESUMO

Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a component of the metastatic signatures of melanoma, breast cancer, glioblastoma, lung cancer and head and neck squamous cell carcinoma (HNSCC). Here we tested the efficacy of NEDD9's domains in stimulating matrix metalloproteinase (MMP) secretion and invadopodia formation in cells stably expressing various NEDD9 mutants. Replacement of the 13 YxxP motif substrate domain (SD) tyrosines and the C-terminal Y629 with phenylalanines (F14NEDD9) eliminated tyrosine phosphorylation, MMP9 secretion and loss of invadopodia formation. Mutation of the N-terminal SH3 domain Y12 to glutamic acid (Y12ENEDD9) or phenylalanine (Y12FNEDD9) reduced MMP9 secretion and inhibited invadopodia formation. SH3 domain deletion (∆SH3NEDD9) resulted in the loss of MMP9 secretion and a lack of invadopodia formation. The SH3-SD domain (SSNEDD9) construct exhibited tyrosine phosphorylation and stimulated MMP9 secretion, as did ∆CTNEDD9 which lacked the C-terminus (∆C-terminal; ∆CT). E13NEDD9 expression blocked MMP9 secretion and invadopodia formation. MICAL1 (molecule interacting with Cas-L1) silencing with a short hairpin RNA reduced MMP9 secretion, vimentin and E-cadherin levels while increasing N-cadherin and Rab6 levels, consistent with reduced invasive behavior. These findings indicate that NEDD9 SD phosphorylation and SH3 domain interactions are necessary for increasing MMP9 secretion and invadopodia formation.

2.
Oncotarget ; 8(14): 22991-23007, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160562

RESUMO

Over 300,000 patients develop squamous cell carcinoma of the head and neck (HNSCC) worldwide with 25-30% of patients ultimately dying from their disease. Currently, molecular biomarkers are not used in HNSCC but several genes have been identified including mutant TP53 (mutp53). Our recent work has identified an approach to stratify patients with tumors harboring high or low risk TP53 mutations. Non-muscle Myosin IIA (NMIIA) was recently identified as a tumor suppressor in HNSCC. We now demonstrate that low MYH9 expression is associated with decreased survival in patients with head and neck cancer harboring low-risk mutp53 but not high-risk mutp53. Furthermore, inhibition of NMIIA leads to increased invasion in cells harboring wildtype p53 (wtp53), which was not observed in high-risk mutp53 cells. This increased invasiveness of wtp53 following NMIIA inhibition was associated with reduced p53 target gene expression and was absent in cells expressing mutp53. This reduced expression may be due, in part, to a decrease in nuclear localization of wtp53. These findings suggest that the tumor suppressor capability of wtp53 is dependent upon functional NMIIA and that the invasive phenotype of high-risk mutp53 is independent of NMIIA.


Assuntos
Carcinoma de Células Escamosas/genética , Genes Supressores de Tumor , Genes p53 , Neoplasias de Cabeça e Pescoço/genética , Proteína Supressora de Tumor p53/genética , Apoptose/fisiologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Transfecção , Proteína Supressora de Tumor p53/metabolismo
3.
Am J Physiol Cell Physiol ; 307(6): C554-60, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25055824

RESUMO

Epidermal growth factor (EGF) is linked to the pathogenesis of polycystic kidney disease (PKD). We explored signaling pathways activated by EGF in orpk cilia (-) collecting duct cell line derived from a mouse model of PKD (hypomorph of the Tg737/Ift88 gene) with severely stunted cilia, and in a control orpk cilia (+) cell line with normal cilia. RT-PCR demonstrated mRNAs for EGF receptor subunits ErbB1, ErbB2, ErbB3, ErbB4, and mRNAs for Na(+)/H(+) exchangers (NHE), NHE-1, NHE-2, NHE-3, NHE-4, and NHE-5 in both cell lines. EGF stimulated proton efflux in both cell lines. This effect was significantly attenuated by MIA, 5-(n-methyl-N-isobutyl) amiloride, a selective inhibitor of NHE-1 and NHE-2, and orpk cilia (-) cells were more sensitive to MIA than control cells (P < 0.01). EGF significantly induced extracellular signal-regulated kinase (ERK) phosphorylation in both cilia (+) and cilia (-) cells (63.3 and 123.6%, respectively), but the effect was more pronounced in orpk cilia (-) cells (P < 0.01). MIA significantly attenuated EGF-induced ERK phosphorylation only in orpk cilia (-) cells (P < 0.01). EGF increased proliferation of orpk cilia (+) cells and orpk cilia (-) cells, respectively, and MIA at 1-5 µM attenuated EGF-induced proliferation in orpk cilia (-) cells without affecting proliferation of orpk cilia (+) cells. EGF-induced proliferation of both cell lines was significantly decreased by the EGFR tyrosine kinase inhibitor AG1478 and MEK inhibitor PD98059. These results suggest that EGF exerts mitogenic effects in the orpk cilia (-) cells via activation of growth-associated amiloride-sensitive NHEs and ERK.


Assuntos
Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Túbulos Renais Coletores/enzimologia , Doenças Renais Policísticas/enzimologia , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cílios/enzimologia , Cílios/patologia , Modelos Animais de Doenças , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Isoenzimas , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/patologia , Camundongos , Camundongos Transgênicos , Fosforilação , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/genética , Transfecção , Proteínas Supressoras de Tumor/genética
4.
Biochim Biophys Acta ; 1793(7): 1174-81, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19341767

RESUMO

Sodium-proton exchanger type 1 (NHE-1) is ubiquitously expressed, is activated by numerous growth factors, and plays significant roles in regulating intracellular pH and cellular volume, proliferation and cytoskeleton. Despite its importance, little is known about its regulation in renal glomerular podocytes. In the current work, we studied the regulation of NHE-1 activity by the epidermal growth factor receptor (EGFR) in cultured podocytes. RT-PCR demonstrated mRNAs for NHE-1 and NHE-2 in differentiated podocytes, as well as for EGFR subunits EGFR/ErbB1, Erb3, and ErbB4. EGF induced concentration-dependent increases in proton efflux in renal podocytes as assessed using a Cytosensor microphysiometer, were diminished in the presence of 5-(N-methyl-N-isobutyl) amiloride or in a sodium-free solution. Furthermore, pharmacological inhibitors of Janus kinase (Jak2) and calmodulin (CaM) attenuated EGF-induced NHE-1 activity. Co-immunoprecipitation studies determined that EGF induced formation of complexes between Jak2 and CaM, as well as between CaM and NHE-1. In addition, EGF increased levels of tyrosine phosphorylation of Jak2 and CaM. The EGFR kinase inhibitor, AG1478, blocked activation of NHE-1, but did not block EGF-induced phosphorylation of Jak2 or CaM. These results suggest that EGF induces NHE-1 activity in podocytes through two pathways: (1) EGF-->EGFR-->Jak2 activation (independent of EGFR tyrosine kinase activity)-->tyrosine phosphorylation of CaM-->CaM binding to NHE-1-->conformational change of NHE-1-->activation of NHE-1; and (2) EGF-->EGFR-->EGFR kinase activation-->association of CaM with NHE-1 (independent of Jak2)-->conformational change of NHE-1-->activation of NHE-1.


Assuntos
Calmodulina/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Janus Quinases/metabolismo , Podócitos/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Western Blotting , Diferenciação Celular , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Luciferases/metabolismo , Fosforilação , Podócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trocadores de Sódio-Hidrogênio/genética , Transfecção
5.
Am J Physiol Heart Circ Physiol ; 292(5): H2220-6, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17208995

RESUMO

Recent research has indicated that the protein kinase C (PKC) isoforms and the heat shock proteins (HSPs) are involved in cardioprotection. We have investigated the possible interaction between these two protein families. We have found that adenoviral-mediated expression of PKC-alpha in neonatal rat ventricular myocytes (NRVM) not only increases the expression of HSP70 but also protects against simulated ischemia-reperfusion. In addition, Western blots of PKC-alpha-infected NRVM indicated that other HSPs are not induced in the same manner as HSP70. In an effort to determine the mechanism of induction of HSP70 by PKC-alpha, we tested a chimeric construct that linked the luciferase reporter gene to the 5'-promoter region of HSP70 in myogenic H9c2 cells. When PKC-alpha was expressed, the 5'-promoter region of the HSP70 responded robustly, indicating that PKC-alpha induction of HSP70 expression is through transcription activation. Electrophoretic mobility shift assay determined that overexpression of PKC-alpha, PKC-delta, or PKC-epsilon did not induce activation of heat shock factor-1 (HSF-1). Therefore, induction of HSP70 by PKC-alpha is independent of heat shock factor-1 activation. We also measured cellular injury by assessing creatine kinase (CK) release from NRVM after simulated ischemia to determine cardioprotection. NRVM infected with the wild-type adenoviral construct AdwtPKC-alpha released 54% less CK than control NRVM. Experiments using small interfering RNA against HSP70 indicate that loss of PKC-alpha-induced HSP70 expression results in increased CK release or a loss of protection. Our results show that there is a close interaction between PKC-alpha and HSP70, independent of heat shock factor-1 activation, and that the protection conferred by PKC-alpha overexpression is mediated by the transcriptionally induced expression of HSP70.


Assuntos
Cardiotônicos/metabolismo , Creatina Quinase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína Quinase C-alfa/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Regulação para Cima
6.
J Pharmacol Exp Ther ; 320(1): 314-22, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17050776

RESUMO

The type 1 sodium-proton exchanger (NHE-1) is expressed ubiquitously and regulates key cellular functions, including mitogenesis, cell volume, and intracellular pH. Despite its importance, the signaling pathways that regulate NHE-1 remain incompletely defined. In this work, we present evidence that stimulation of the 5-hydroxytryptamine 1A (5-HT1A) receptor results in the formation of a signaling complex that includes activated Janus kinase 2 (Jak2), Ca2+/calmodulin (CaM), and NHE-1, and which involves tyrosine phosphorylation of CaM. The signaling pathway also involves rapid agonist-induced association of CaM and NHE-1 as assessed by coimmunoprecipitation studies and by bioluminescence resonance energy transfer studies in living cells. We propose that NHE-1 is activated through this pathway: 5-HT1A receptor --> G(i2)alpha and/or G(i3)alpha --> Jak2 activation --> tyrosine phosphorylation of CaM --> increased binding of CaM to NHE-1 --> induction of a conformational change in NHE-1 that unmasks an obscured proton-sensing and/or proton-transporting region of NHE-1 --> activation of NHE-1. The G(i/o)-coupled 5-HT1A receptor now joins a handful of Gq-coupled receptors and hypertonic shock as upstream activators of this emerging pathway. In the course of this work, we have presented clear evidence that CaM can be activated through tyrosine phosphorylation in the absence of a significant role for elevated intracellular Ca2+. We have also shown for the first time that the association of CaM with NHE-1 in living cells is a dynamic process.


Assuntos
Cálcio/metabolismo , Calmodulina/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Janus Quinase 2/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Células CHO , Cricetinae , Fosforilação , Conformação Proteica , Tirosina/metabolismo
7.
Cell Stress Chaperones ; 8(4): 297-302, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15115281

RESUMO

Previous studies have suggested that protein kinase C (PKC) is involved in heat shock protein (Hsp)-mediated cardioprotection. Therefore, we wanted to determine whether overexpression of Hsps modulates PKC expression, which will give us further insight into understanding the mechanism by which Hsps and PKC interact to protect cells from stress-induced injury. Specifically, we overexpressed the inducible form of Hsp70 (Hsp70i) or Hsp90 in rat neonatal cardiomyocytes and evaluated PKCdelta or PKCepsilon expression by immunoblotting and immunofluorescent confocal microscopy. Western analysis showed that overexpression of Hsp70i or Hsp90 decreased PKCepsilon expression. However, overexpression of Hsp70i or Hsp90 did not modify PKCdelta expression over control levels. Overexpression of constitutively active PKCdelta or PKCepsilon increased Hsp70i expression over control levels. The data suggest that overexpression of Hsps differentially modulates expression of PKC isoforms in rat neonatal cardiomyocytes. Furthermore, PKC may directly play a role in Hsp-mediated cardioprotection by upregulating Hsp70i expression.


Assuntos
Proteínas de Choque Térmico/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C/metabolismo , Adenoviridae , Animais , Vetores Genéticos , Ratos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...