Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 51(5): 1063-1078, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37032398

RESUMO

Left atrial ligation (LAL) of the chick embryonic heart is a model of the hypoplastic left heart syndrome (HLHS) where a purely mechanical intervention without genetic or pharmacological manipulation is employed to initiate cardiac malformation. It is thus a key model for understanding the biomechanical origins of HLHS. However, its myocardial mechanics and subsequent gene expressions are not well-understood. We performed finite element (FE) modeling and single-cell RNA sequencing to address this. 4D high-frequency ultrasound imaging of chick embryonic hearts at HH25 (ED 4.5) were obtained for both LAL and control. Motion tracking was performed to quantify strains. Image-based FE modeling was conducted, using the direction of the smallest strain eigenvector as the orientations of contractions, the Guccione active tension model and a Fung-type transversely isotropic passive stiffness model that was determined via micro-pipette aspiration. Single-cell RNA sequencing of left ventricle (LV) heart tissues was performed for normal and LAL embryos at HH30 (ED 6.5) and differentially expressed genes (DEG) were identified.After LAL, LV thickness increased by 33%, strains in the myofiber direction increased by 42%, while stresses in the myofiber direction decreased by 50%. These were likely related to the reduction in ventricular preload and underloading of the LV due to LAL. RNA-seq data revealed potentially related DEG in myocytes, including mechano-sensing genes (Cadherins, NOTCH1, etc.), myosin contractility genes (MLCK, MLCP, etc.), calcium signaling genes (PI3K, PMCA, etc.), and genes related to fibrosis and fibroelastosis (TGF-ß, BMP, etc.). We elucidated the changes to the myocardial biomechanics brought by LAL and the corresponding changes to myocyte gene expressions. These data may be useful in identifying the mechanobiological pathways of HLHS.


Assuntos
Fibrilação Atrial , Síndrome do Coração Esquerdo Hipoplásico , Humanos , Síndrome do Coração Esquerdo Hipoplásico/diagnóstico por imagem , Síndrome do Coração Esquerdo Hipoplásico/genética , Fenômenos Biomecânicos , Miocárdio/metabolismo , Átrios do Coração/diagnóstico por imagem , Ventrículos do Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...