Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(38): 43732-43740, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121103

RESUMO

The ongoing COVID-19 pandemic has increased the use of single-use medical fabrics such as surgical masks, respirators, and other personal protective equipment (PPE), which have faced worldwide supply chain shortages. Reusable PPE is desirable in light of such shortages; however, the use of reusable PPE is largely restricted by the difficulty of rapid sterilization. In this work, we demonstrate successful bacterial and viral inactivation through remote and rapid radio frequency (RF) heating of conductive textiles. The RF heating behavior of conductive polymer-coated fabrics was measured for several different fabrics and coating compositions. Next, to determine the robustness and repeatability of this heating response, we investigated the textile's RF heating response after multiple detergent washes. Finally, we show a rapid reduction of bacteria and virus by RF heating our conductive fabric. 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) was removed from our conductive fabrics after only 10 min of RF heating; human cytomegalovirus (HCMV) was completely sterilized after 5 min of RF heating. These results demonstrate that RF heating conductive polymer-coated fabrics offer new opportunities for applications of conductive textiles in the medical and/or electronic fields.


Assuntos
COVID-19 , Staphylococcus aureus Resistente à Meticilina , Bactérias , COVID-19/prevenção & controle , Detergentes , Calefação , Humanos , Pandemias , Polímeros , Têxteis/microbiologia , Inativação de Vírus
2.
J Biomater Appl ; 36(3): 419-427, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33866852

RESUMO

Elastin-like polypeptides (ELP) have been used as a genetically-engineered, biocompatible substitute for elastin. Cell culture coatings prepared using ELP conjugated to low molecular weight polyethyleneimine (PEI) entices cells to form three-dimensional cellular aggregates that mimic their in vivo counterparts. This study seeks to control the deposition of the ELP and ELP-PEI molecules to control the roughness of the final coatings. The two polymers were coated onto three different substrates (glass, polystyrene, tissue-culture polystyrene) and the solution environment was altered by changing the polymer concentration (0.5, 1.0, 1.5 mg/mL) and/or salt concentration (None, 0.2 M phosphate buffered saline) for a total of 36 conditions. Atomic force microscopy (AFM) was used to measure the average roughness (Ra) of the samples and found that ELP coated samples had a higher Ra than their ELP-PEI counterparts. The coatings were tested for stability by performing cell culture media changes every three days for 11 days. AFM showed that the average roughness of the tested samples increased with each media change. To address this, the surfaces were crosslinked using hexamethyl diisocyanate, which minimized the change in surface roughness even when subjected to an intense sonication process. This study provides parameters to achieve elastin-based coatings with controlled roughness that can be used to support stable, long-term in vitro cell culture.


Assuntos
Materiais Revestidos Biocompatíveis/química , Elastina/química , Peptídeos/química , Técnicas de Cultura de Células , Reagentes de Ligações Cruzadas/química , Microscopia de Força Atômica , Propriedades de Superfície
3.
Sci Rep ; 11(1): 6343, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737605

RESUMO

This paper evaluates the aggregation behavior of a potential drug and gene delivery system that combines branched polyethyleneimine (PEI), a positively-charged polyelectrolyte, and elastin-like polypeptide (ELP), a recombinant polymer that exhibits lower critical solution temperature (LCST). The LCST behavior of ELP has been extensively studied, but there are no quantitative ways to control the size of aggregates formed after the phase transition. The aggregate size cannot be maintained when the temperature is lowered below the LCST, unless the system exhibits hysteresis and forms irreversible aggregates. This study shows that conjugation of ELP with PEI preserves the aggregation behavior that occurs above the LCST and achieves precise aggregate radii when the solution conditions of pH (3, 7, 10), polymer concentration (0.1, 0.15, 0.3 mg/mL), and salt concentration (none, 0.2, 1 M) are carefully controlled. K-means cluster analyses showed that salt concentration was the most critical factor controlling the hydrodynamic radius and LCST. Conjugating ELP to PEI allowed crosslinking the aggregates and achieved stable particles that maintained their size below LCST, even after removal of the harsh (high salt or pH) conditions used to create them. Taken together, the ability to control aggregate sizes and use of crosslinking to maintain stability holds excellent potential for use in biological delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Elastina/química , Partículas Elementares/uso terapêutico , Aprendizado de Máquina , Temperatura Baixa , Elastina/uso terapêutico , Técnicas de Transferência de Genes , Humanos , Hidrodinâmica , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Transição de Fase , Temperatura , Temperatura de Transição
4.
Comput Biol Med ; 128: 104134, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249343

RESUMO

Elastin-like polypeptides (ELP) belong to a family of recombinant polymers that shows great promise as biocompatible drug delivery and tissue engineering materials. ELPs aggregate above a characteristic transition temperature (Tt). We have previously shown that the Tt and size of the resulting aggregates can be controlled by changing the ELP's solution environment (polymer concentration, salt concentration, and pH). When coupled to a synthetic polyelectrolyte, polyethyleneimine (PEI), ELP retains its Tt behavior and gains the ability to be crosslinked into defined particle sizes. This paper explores several machine learning models to predict the Tt and hydrodynamic radius (Rh) of ELP and two ELP-PEI polymers in varying solution conditions. An exhaustive design of experiments matrix consisting of 81 conditions of interest with varying salt concentration (0, 0.2, 1 M NaCl), pH (3, 7, 10), polymer concentration (0.1, 0.17, 0.3 mg/mL), and polymer type (ELP, ELP-PEI800, ELP-PEI10K) was investigated. The five models used in this study were multiple linear regression, elastic-net, support vector regression, multi-layer perceptron, and random forest. A multi-layer perceptron model was found to have the highest accuracy, with an R2 score of 0.97 for both Rh and Tt. This was followed closely by the random forest model, with an R2 of 0.94 for Rh and 0.95 for Tt. Feature importance was determined using the random forest and linear regression models. Both models showed that salt concentration and polymer type were the two most influential factors that determined Rh, while salt concentration was the dominant factor for Tt.


Assuntos
Hidrodinâmica , Rádio (Anatomia) , Algoritmos , Elastina , Aprendizado de Máquina , Temperatura , Temperatura de Transição
5.
J Biomed Mater Res B Appl Biomater ; 108(7): 3022-3032, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396702

RESUMO

While three-dimensional spheroids outperform traditional two-dimensional monolayer culture for human adipose-derived stem cells (hASCs), there is not a consensus on the most successful method for enhancing their adipogenic differentiation and minimizing the loss of physiologically relevant, fatty spheroids during culture. To this end, we compared three culture methods, namely, elastin-like polypeptide-polyethyleneimine (ELP-PEI) coated surfaces, ultra-low attachment static culture, and suspension culture for their ability to form and retain productive hASC spheroids. The ELP-PEI coatings used the ELP conjugated to two molecular weights of PEI (800 or 25,000 g/mol). FTIR spectroscopy, atomic force microscopy, and contact angle goniometry revealed that the ELP-PEI coatings had similar chemical structures, surface topography, and hydrophobicity. Time-lapse microscopy showed that increasing the PEI molecular weight resulted in smaller spheroids. Measurement of triglyceride content showed that the three methods induced comparable differentiation of hASCs toward the adipogenic lineage. DNA content and morphometric analysis revealed merging of spheroids to form larger spheroids in the ultra-low attachment static culture and suspension culture methods. In contrast, the retention of hASC spheroid sizes and numbers with a regular spheroid size (~100 µm) were best atop the ELP-PEI800 coatings. Overall, this research shows that the spheroid culture atop the ELP-PEI coatings is a suitable cell culture model for future studies involving long-term, three-dimensional culture of mature adipocytes derived from hASCs.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Esferoides Celulares/metabolismo , Adipócitos/citologia , Tecido Adiposo/citologia , Materiais Revestidos Biocompatíveis/química , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Esferoides Celulares/citologia
6.
ACS Omega ; 5(14): 8403-8413, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309751

RESUMO

Previously, we found that elastin-like polypeptide (ELP), when dried above the lower critical solution temperature on top of a hydrophilic fused silica disk, exhibited a dynamic coalescence behavior. The ELP initially wet the silica, but over the next 12 h, dewett the surface and formed aggregates of precise sizes and shapes. Using Fourier-transform infrared (FT-IR) spectroscopy, the present study explores the role of secondary structures present in ELP during this progressive desiccation and their effect on aggregate size. The amide I peak (1600-1700 cm-1) in the ELP's FT-IR spectrum was deconvoluted using the second derivative method into eight subpeaks (1616, 1624, 1635, 1647, 1657, 1666, 1680, 1695 cm-1). These peaks were identified to represent extended strands, ß-turns, 3(10)-helix, polyproline I, and polyproline II using previous studies on ELP and molecules similar in peptide composition. Positive correlations were established between the various subpeaks, water content, and aggregate size to understand the contributions of the secondary structures in particle formation. The positive correlations suggest that type II ß-turns, independent of the water content, contributed to the growth of the aggregates at earlier time points (1-3.5 h). At later time points (6-12 h), the aggregate growth was attributed to the formation of 3(10)-helices that relied on a decrease in water content. Understanding these relationships gives greater control in creating precisely sized aggregates and surface coatings with varying roughness.

7.
Anal Biochem ; 558: 41-49, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063889

RESUMO

In this study, scanning electron microscopy (SEM) was used to observe the interaction between de-solvated SynB1-elastin-like polypeptide (SynB1-ELP) and silica at a temperature above ELP's lower critical solution temperature (LCST). ELP was seen to initially wet the surface of the silica before rearranging to form narrowly distributed spherical particles. After formation, the ELP particles dynamically rearranged to increase and subsequently decrease in size until 24 h at which time they collapsed. SEM and Energy Dispersive X-ray Spectroscopy revealed that the formation of a thin layer of salt from the PBS solution preceded the initial wetting of ELP on silica, which was shown to play a role in the continuous rearrangement of ELP. FT-IR revealed that the salt, in combination with the hydrophilic silica, trapped water that provided a repulsive surface to the hydrophobic ELP and forced the ELP to continuously minimize its surface area until the water evaporated. This behavior shows that ELP's thermo-responsive nature coupled with its hydrophobicity can be used to create ELP particles and surfaces that can reorganize with minimal water present.


Assuntos
Elastina/química , Microscopia Eletrônica de Varredura/métodos , Peptídeos/química , Dióxido de Silício/química , Temperatura , Interações Hidrofóbicas e Hidrofílicas , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...