Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 30(3-4): 115-130, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37930721

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) have been recognized as new candidates for the treatment of serious endometrial injuries. However, owing to the local microenvironment of damaged endometrium, transplantation of BMSCs yielded disappointing results. In this study, Pectin-Pluronic® F-127 hydrogel as scaffolds were fabricated to provide three-dimensional architecture for the attachment, growth, and migration of BMSCs. E2 was encapsulated into the W/O/W microspheres to construct pectin-based E2-loaded microcapsules (E2 MPs), which has the potential to serve as a long-term reliable source of E2 for endometrial regeneration. Then, the BMSCs/E2 MPs/scaffolds system was injected into the uterine cavity of mouse endometrial injury model for treatment. At 4 weeks after transplantation, the system increased proliferative abilities of uterine endometrial cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive an embryo, suggesting that the BMSCs/E2 MPs/scaffolds system is a promising treatment option for endometrial regeneration. Furthermore, the mechanism of E2 in promoting the repair of endometrial injury was also investigated. Exosomes are critical paracrine mediators that act as biochemical cues to direct stem cell differentiation. In this study, it was found that the expression of endometrial epithelial cell (EEC) markers was upregulated in BMSCs treated by exosomes secreted from endometrial stromal cells (ESCs-Exos). Exosomes derived from E2-stimulated ESCs further promoted the expression level of EECs markers in BMSCs, suggesting exosomes released from ESCs by E2 stimulation could enhance the differentiation efficiency of BMSCs. Therefore, exosomes derived from ESCs play paracrine roles in endometrial regeneration stimulated by E2 and provide optimal estrogenic response.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Feminino , Camundongos , Medula Óssea , Cápsulas/metabolismo , Ratos Sprague-Dawley , Transplante de Células-Tronco Mesenquimais/métodos , Endométrio/metabolismo , Modelos Animais de Doenças , Pectinas
2.
Front Oncol ; 13: 1278157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288102

RESUMO

Background: Treatment-resistant glioblastoma (trGBM) is an aggressive brain tumor with a dismal prognosis, underscoring the need for better treatment options. Emerging data indicate that trGBM iron metabolism is an attractive therapeutic target. The novel iron mimetic, gallium maltolate (GaM), inhibits mitochondrial function via iron-dependent and -independent pathways. Methods: In vitro irradiated adult GBM U-87 MG cells were tested for cell viability and allowed to reach confluence prior to stereotactic implantation into the right striatum of male and female athymic rats. Advanced MRI at 9.4T was carried out weekly starting two weeks after implantation. Daily oral GaM (50mg/kg) or vehicle were provided on tumor confirmation. Longitudinal MRI parameters were processed for enhancing tumor ROIs in OsiriX 8.5.1 (lite) with Imaging Biometrics Software (Imaging Biometrics LLC). Statistical analyses included Cox proportional hazards regression models, Kaplan-Meier survival plots, linear mixed model comparisons, and t-statistic for slopes comparison as indicator of tumor growth rate. Results: In this study we demonstrate non-invasively, using longitudinal MRI surveillance, the potent antineoplastic effects of GaM in a novel rat xenograft model of trGBM, as evidenced by extended suppression of tumor growth (23.56 mm3/week untreated, 5.76 mm3/week treated, P < 0.001), a blunting of tumor perfusion, and a significant survival benefit (median overall survival: 30 days untreated, 56 days treated; P < 0.001). The therapeutic effect was confirmed histologically by the presence of abundant cytotoxic cellular swelling, a significant reduction in proliferation markers (P < 0.01), and vessel normalization characterized by prominent vessel pruning, loss of branching, and uniformity of vessel lumina. Xenograft tumors in the treatment group were further characterized by an absence of an invasive edge and a significant reduction in both, MIB-1% and mitotic index (P < 0.01 each). Transferrin receptor and ferroportin expression in GaM-treated tumors illustrated cellular iron deprivation. Additionally, treatment with GaM decreased the expression of pro-angiogenic markers (von Willebrand Factor and VEGF) and increased the expression of anti-angiogenic markers, such as Angiopoietin-2. Conclusion: Monotherapy with the iron-mimetic GaM profoundly inhibits trGBM growth and significantly extends disease-specific survival in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...