Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 16(1): 7, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752880

RESUMO

BACKGROUND: Assessing the performance of elite lines in target environments is essential for breeding programs to select the most relevant genotypes. One of the main complexities in this task resides in accounting for the genotype by environment interactions. Genomic prediction models that integrate information from multi-environment trials and environmental covariates can be efficient tools in this context. The objective of this study was to assess the predictive ability of different genomic prediction models to optimize the use of multi-environment information. We used 111 elite breeding lines representing the diversity of the international rice research institute breeding program for irrigated ecosystems. The lines were evaluated for three traits (days to flowering, plant height, and grain yield) in 15 environments in Asia and Africa and genotyped with 882 SNP markers. We evaluated the efficiency of genomic prediction to predict untested environments using seven multi-environment models and three cross-validation scenarios. RESULTS: The elite lines were found to belong to the indica group and more specifically the indica-1B subgroup which gathered improved material originating from the Green Revolution. Phenotypic correlations between environments were high for days to flowering and plant height (33% and 54% of pairwise correlation greater than 0.5) but low for grain yield (lower than 0.2 in most cases). Clustering analyses based on environmental covariates separated Asia's and Africa's environments into different clusters or subclusters. The predictive abilities ranged from 0.06 to 0.79 for days to flowering, 0.25-0.88 for plant height, and - 0.29-0.62 for grain yield. We found that models integrating genotype-by-environment interaction effects did not perform significantly better than models integrating only main effects (genotypes and environment or environmental covariates). The different cross-validation scenarios showed that, in most cases, the use of all available environments gave better results than a subset. CONCLUSION: Multi-environment genomic prediction models with main effects were sufficient for accurate phenotypic prediction of elite lines in targeted environments. These results will help refine the testing strategy to update the genomic prediction models to improve predictive ability.

2.
Methods Mol Biol ; 2467: 569-617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451791

RESUMO

Genomic prediction can be a powerful tool to achieve greater rates of genetic gain for quantitative traits if thoroughly integrated into a breeding strategy. In rice as in other crops, the interest in genomic prediction is very strong with a number of studies addressing multiple aspects of its use, ranging from the more conceptual to the more practical. In this chapter, we review the literature on rice (Oryza sativa) and summarize important considerations for the integration of genomic prediction in breeding programs. The irrigated breeding program at the International Rice Research Institute is used as a concrete example on which we provide data and R scripts to reproduce the analysis but also to highlight practical challenges regarding the use of predictions. The adage "To someone with a hammer, everything looks like a nail" describes a common psychological pitfall that sometimes plagues the integration and application of new technologies to a discipline. We have designed this chapter to help rice breeders avoid that pitfall and appreciate the benefits and limitations of applying genomic prediction, as it is not always the best approach nor the first step to increasing the rate of genetic gain in every context.


Assuntos
Oryza , Genoma de Planta , Genômica , Modelos Genéticos , Oryza/genética , Melhoramento Vegetal
3.
Rice (N Y) ; 14(1): 92, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34773509

RESUMO

Rice genetic improvement is a key component of achieving and maintaining food security in Asia and Africa in the face of growing populations and climate change. In this effort, the International Rice Research Institute (IRRI) continues to play a critical role in creating and disseminating rice varieties with higher productivity. Due to increasing demand for rice, especially in Africa, there is a strong need to accelerate the rate of genetic improvement for grain yield. In an effort to identify and characterize the elite breeding pool of IRRI's irrigated rice breeding program, we analyzed 102 historical yield trials conducted in the Philippines during the period 2012-2016 and representing 15,286 breeding lines (including released varieties). A mixed model approach based on the pedigree relationship matrix was used to estimate breeding values for grain yield, which ranged from 2.12 to 6.27 t·ha-1. The rate of genetic gain for grain yield was estimated at 8.75 kg·ha-1 year-1 (0.23%) for crosses made in the period from 1964 to 2014. Reducing the data to only IRRI released varieties, the rate doubled to 17.36 kg·ha-1 year-1 (0.46%). Regressed against breeding cycle the rate of gain for grain yield was 185 kg·ha-1 cycle-1 (4.95%). We selected 72 top performing lines based on breeding values for grain yield to create an elite core panel (ECP) representing the genetic diversity in the breeding program with the highest heritable yield values from which new products can be derived. The ECP closely aligns with the indica 1B sub-group of Oryza sativa that includes most modern varieties for irrigated systems. Agronomic performance of the ECP under multiple environments in Asia and Africa confirmed its high yield potential. We found that the rate of genetic gain for grain yield found in this study was limited primarily by long cycle times and the direct introduction of non-improved material into the elite pool. Consequently, the current breeding scheme for irrigated rice at IRRI is based on rapid recurrent selection among highly elite lines. In this context, the ECP constitutes an important resource for IRRI and NAREs breeders to carefully characterize and manage that elite diversity.

4.
J Exp Bot ; 72(14): 5158-5179, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021317

RESUMO

The CGIAR crop improvement (CI) programs, unlike commercial CI programs, which are mainly geared to profit though meeting farmers' needs, are charged with meeting multiple objectives with target populations that include both farmers and the community at large. We compiled the opinions from >30 experts in the private and public sector on key strategies, methodologies, and activities that could the help CGIAR meet the challenges of providing farmers with improved varieties while simultaneously meeting the goals of: (i) nutrition, health, and food security; (ii) poverty reduction, livelihoods, and jobs; (iii) gender equality, youth, and inclusion; (iv) climate adaptation and mitigation; and (v) environmental health and biodiversity. We review the crop improvement processes starting with crop choice, moving through to breeding objectives, production of potential new varieties, selection, and finally adoption by farmers. The importance of multidisciplinary teams working towards common objectives is stressed as a key factor to success. The role of the distinct disciplines, actors, and their interactions throughout the process from crop choice through to adoption by farmers is discussed and illustrated.


Assuntos
Agricultura , Fazendeiros , Humanos
5.
Theor Appl Genet ; 134(8): 2613-2637, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34018019

RESUMO

KEY MESSAGE: Association analysis for ionomic concentrations of 20 elements identified independent genetic factors underlying the root and shoot ionomes of rice, providing a platform for selecting and dissecting causal genetic variants. Understanding the genetic basis of mineral nutrient acquisition is key to fully describing how terrestrial organisms interact with the non-living environment. Rice (Oryza sativa L.) serves both as a model organism for genetic studies and as an important component of the global food system. Studies in rice ionomics have primarily focused on above ground tissues evaluated from field-grown plants. Here, we describe a comprehensive study of the genetic basis of the rice ionome in both roots and shoots of 6-week-old rice plants for 20 elements using a controlled hydroponics growth system. Building on the wealth of publicly available rice genomic resources, including a panel of 373 diverse rice lines, 4.8 M genome-wide single-nucleotide polymorphisms, single- and multi-marker analysis pipelines, an extensive tome of 321 candidate genes and legacy QTLs from across 15 years of rice genetics literature, we used genome-wide association analysis and biparental QTL analysis to identify 114 genomic regions associated with ionomic variation. The genetic basis for root and shoot ionomes was highly distinct; 78 loci were associated with roots and 36 loci with shoots, with no overlapping genomic regions for the same element across tissues. We further describe the distribution of phenotypic variation across haplotypes and identify candidate genes within highly significant regions associated with sulfur, manganese, cadmium, and molybdenum. Our analysis provides critical insight into the genetic basis of natural phenotypic variation for both root and shoot ionomes in rice and provides a comprehensive resource for dissecting and testing causal genetic variants.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Brotos de Planta/genética , Estudo de Associação Genômica Ampla , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas
6.
Theor Appl Genet ; 132(3): 627-645, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824972

RESUMO

KEY MESSAGE: The integration of new technologies into public plant breeding programs can make a powerful step change in agricultural productivity when aligned with principles of quantitative and Mendelian genetics. The breeder's equation is the foundational application of quantitative genetics to crop improvement. Guided by the variables that describe response to selection, emerging breeding technologies can make a powerful step change in the effectiveness of public breeding programs. The most promising innovations for increasing the rate of genetic gain without greatly increasing program size appear to be related to reducing breeding cycle time, which is likely to require the implementation of parent selection on non-inbred progeny, rapid generation advance, and genomic selection. These are complex processes and will require breeding organizations to adopt a culture of continuous optimization and improvement. To enable this, research managers will need to consider and proactively manage the, accountability, strategy, and resource allocations of breeding teams. This must be combined with thoughtful management of elite genetic variation and a clear separation between the parental selection process and product development and advancement process. With an abundance of new technologies available, breeding teams need to evaluate carefully the impact of any new technology on selection intensity, selection accuracy, and breeding cycle length relative to its cost of deployment. Finally breeding data management systems need to be well designed to support selection decisions and novel approaches to accelerate breeding cycles need to be routinely evaluated and deployed.


Assuntos
Melhoramento Vegetal/métodos , Plantas/genética , Setor Público , Marcadores Genéticos , Padrões de Herança/genética , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética
7.
Theor Appl Genet ; 132(3): 647-667, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30560465

RESUMO

KEY MESSAGE: New models for integration of major gene MAS with modern breeding approaches stand to greatly enhance the reliability and efficiency of breeding, facilitating the leveraging of traditional genetic diversity. Genetic diversity is well recognised as contributing essential variation to crop breeding processes, and marker-assisted selection is cited as the primary tool to bring this diversity into breeding programs without the associated genetic drag from otherwise poor-quality genomes of donor varieties. However, implementation of marker-assisted selection techniques remains a challenge in many breeding programs worldwide. Many factors contribute to this lack of adoption, such as uncertainty in how to integrate MAS with traditional breeding processes, lack of confidence in MAS as a tool, and the expense of the process. However, developments in genomics tools, locus validation techniques, and new models for how to utilise QTLs in breeding programs stand to address these issues. Marker-assisted forward breeding needs to be enabled through the identification of robust QTLs, the design of reliable marker systems to select for these QTLs, and the delivery of these QTLs into elite genomic backgrounds to enable their use without associated genetic drag. To enhance the adoption and effectiveness of MAS, rice is used as an example of how to integrate new developments and processes into a coherent, efficient strategy for utilising genetic variation. When processes are instituted to address these issues, new genes can be rolled out into a breeding program rapidly and completely with a minimum of expense.


Assuntos
Melhoramento Vegetal/métodos , Cruzamentos Genéticos , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Locos de Características Quantitativas/genética
8.
Theor Appl Genet ; 126(4): 867-87, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23471459

RESUMO

More accurate and precise phenotyping strategies are necessary to empower high-resolution linkage mapping and genome-wide association studies and for training genomic selection models in plant improvement. Within this framework, the objective of modern phenotyping is to increase the accuracy, precision and throughput of phenotypic estimation at all levels of biological organization while reducing costs and minimizing labor through automation, remote sensing, improved data integration and experimental design. Much like the efforts to optimize genotyping during the 1980s and 1990s, designing effective phenotyping initiatives today requires multi-faceted collaborations between biologists, computer scientists, statisticians and engineers. Robust phenotyping systems are needed to characterize the full suite of genetic factors that contribute to quantitative phenotypic variation across cells, organs and tissues, developmental stages, years, environments, species and research programs. Next-generation phenotyping generates significantly more data than previously and requires novel data management, access and storage systems, increased use of ontologies to facilitate data integration, and new statistical tools for enhancing experimental design and extracting biologically meaningful signal from environmental and experimental noise. To ensure relevance, the implementation of efficient and informative phenotyping experiments also requires familiarity with diverse germplasm resources, population structures, and target populations of environments. Today, phenotyping is quickly emerging as the major operational bottleneck limiting the power of genetic analysis and genomic prediction. The challenge for the next generation of quantitative geneticists and plant breeders is not only to understand the genetic basis of complex trait variation, but also to use that knowledge to efficiently synthesize twenty-first century crop varieties.


Assuntos
Cruzamento/métodos , Mapeamento Cromossômico/métodos , Produtos Agrícolas/genética , Estudos de Associação Genética/métodos , Estudos de Associação Genética/tendências , Estudo de Associação Genômica Ampla/métodos , Bases de Dados como Assunto/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...