Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(15): 27609-27622, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236929

RESUMO

Interest in layered van der Waals semiconductor gallium monosulfide (GaS) is growing rapidly because of its wide band gap value between those of two-dimensional transition metal dichalcogenides and of insulating layered materials such as hexagonal boron nitride. For the design of envisaged optoelectronic, photocatalytic and photonic applications of GaS, the knowledge of its dielectric function is fundamental. Here we present a combined theoretical and experimental investigation of the dielectric function of crystalline 2H-GaS from monolayer to bulk. Spectroscopic imaging ellipsometry with micron resolution measurements are corroborated by first principle calculations of the electronic structure and dielectric function. We further demonstrate and validate the applicability of the established dielectric function to the analysis of the optical response of c-axis oriented GaS layers grown by chemical vapor deposition (CVD). These optical results can guide the design of novel, to our knowledge, optoelectronic and photonic devices based on low-dimensional GaS.

2.
iScience ; 25(6): 104377, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620425

RESUMO

Antimony sulfide, Sb2S3, is interesting as the phase-change material for applications requiring high transmission from the visible to telecom wavelengths, with its band gap tunable from 2.2 to 1.6 eV, depending on the amorphous and crystalline phase. Here we present results from an interlaboratory study on the interplay between the structural change and resulting optical contrast during the amorphous-to-crystalline transformation triggered both thermally and optically. By statistical analysis of Raman and ellipsometric spectroscopic data, we have identified two regimes of crystallization, namely 250°C ≤ T < 300°C, resulting in Type-I spherulitic crystallization yielding an optical contrast Δn ∼ 0.4, and 300 ≤ T < 350°C, yielding Type-II crystallization bended spherulitic structure with different dielectric function and optical contrast Δn ∼ 0.2 below 1.5 eV. Based on our findings, applications of on-chip reconfigurable nanophotonic phase modulators and of a reconfigurable high-refractive-index core/phase-change shell nanoantenna are designed and proposed.

3.
Sci Technol Adv Mater ; 22(1): 985-997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992500

RESUMO

We set out to demonstrate the development of a highly conductive polymer based on poly-(3,4-ethylenedithia thiophene) (PEDTT), PEDOTs structural analogue historically notorious for structural disorder and limited conductivities. The caveat therein was previously described to lie in intra-molecular repulsions. We demonstrate how a tremendous >2600-fold improvement in conductivity and metallic features, such as magnetoconductivity can be achieved. This is achieved through a careful choice of the counter-ion (sulphate) and the use of oxidative chemical vapour deposition (oCVD). It is shown that high structural order on the molecular level was established and the formation of crystallites tens of nanometres in size was achieved. We infer that the sulphate ions therein intercalate between the polymer chains, thus forming densely packed crystals of planar molecules with extended π-systems. Consequently, room-temperature conductivities of above 1000 S cm-1 are achieved, challenging those of conventional PEDOT:PSS. The material is in the critical regime of the metal-insulator transition.

4.
J Phys Chem C Nanomater Interfaces ; 124(9): 5204-5212, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391115

RESUMO

Reflectance anisotropy spectroscopy (RAS) is a powerful optical probe that works on a polarization contrast basis. It can be operated in any environment, ranging from ultrahigh vacuum to vapor phases and liquids. The measured optical anisotropies are caused by several symmetry breaking effects and are exclusively assigned to the surface for otherwise bulk isotropic materials. In this work, we present a systematic study comprising in situ RAS-transient to assess the surface thermodynamics of the chloride adsorption on Cu(110) upon systematic variations of the applied electrode potentials in comparison to cyclic voltammetry (CV). Numerical time-derivatives of the measured RAS-transients are shown to be exclusively associated with electrical currents of those electrochemical reactions, which change the properties of the electrode surface. The recorded transient line-shapes track the Frumkin type isotherm properties related to chloride coverage. Both connections are theoretically discussed. Owing to the surface and interface specificity, RAS is shown to exhibit a high surface sensitivity. In particular, processes taking place in parallel, namely, the hydrogen evolution reaction (HER) as well as the copper dissolution as Cu+ and Cu2+, do not contribute to the RAS response.

5.
Opt Lett ; 44(14): 3426-3429, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305539

RESUMO

Laser-based infrared spectroscopic ellipsometry (SE) is demonstrated for the first time, to the best of our knowledge, by applying a tunable quantum cascade laser (QCL) as a mid-infrared light source. The fast tunability of the employed QCL, combined with phase-modulated polarization, enabled the acquisition of broadband (900-1204 cm-1), high-resolution (1 cm-1) ellipsometry spectra in less than 1 second. A comparison to a conventional Fourier-transform spectrometer-based IR ellipsometer resulted in an improved signal-to-noise ratio (SNR) by a factor of at least 290. The ellipsometry setup was finally applied for the real-time monitoring of molecular reorientation during the stretching process of an anisotropic polypropylene film, thereby illustrating the advantage of sub-second time resolution. The developed method exceeds existing instrumentation by its fast acquisition and high SNR, which could open up a set of new applications of SE such as ellipsometric inline process monitoring and quality control.

6.
ACS Comb Sci ; 19(2): 121-129, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-27992160

RESUMO

Optical bandgap mapping of Nb-Ti mixed oxides anodically grown on a thin film parent metallic combinatorial library was performed via variable angle spectroscopic ellipsometry (VASE). A wide Nb-Ti compositional spread ranging from Nb-90 at.% Ti to Nb-15 at.% Ti deposited by cosputtering was used for this purpose. The Nb-Ti library was stepwise anodized at potentials up to 10 V SHE, and the anodic oxides optical properties were mapped along the Nb-Ti library with 2 at.% resolution. The surface dissimilarities along the Nb-Ti compositional gradient were minimized by tuning the deposition parameters, thus allowing a description of the mixed Nb-Ti oxides based on a single Tauc-Lorentz oscillator for data fitting. Mapping of the Nb-Ti oxides optical bandgap along the entire compositional spread showed a clear deviation from the linear model based on mixing individual Nb and Ti electronegativities proportional to their atomic fractions. This is attributed to the strong amorphization and an in-depth compositional gradient of the mixed oxides. A systematic optical bandgap decrease toward values as low as 2.0 eV was identified at approximately 50 at.% Nb. Mixing of Nb2O5 and TiO2 with both amorphous and crystalline phases is concluded, whereas the possibility of complex NbaTibOy oxide formation during anodization is unlikely.


Assuntos
Ligas/química , Nióbio/química , Óxidos/química , Titânio/química , Cristalização , Técnicas Eletroquímicas , Eletrodos , Propriedades de Superfície
7.
Sci Rep ; 6: 35096, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731421

RESUMO

Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices.

8.
Langmuir ; 30(48): 14486-93, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25383708

RESUMO

Morphological changes of a bare Cu(110) substrate in 10 mM HCl aqueous solution have been studied using cyclic voltammetry (CV), electrochemical scanning tunneling microscopy (EC-STM), and reflectance anisotropy spectroscopy (RAS). At cathodic potentials more positive than the hydrogen evolution reaction, a bare copper surface (1 × 1) structure is found by EC-STM. At anodic potentials more negative than the copper(II) dissolution reaction, a furrowed structure is found. The governing factor that rules Cu(110)-Cl interface processes is discussed as an interplay among Cl(-) adsorption/desorption, the dynamic rearrangement of the surface atoms on the substrate, and strain in order to reduce the surface energy. The information provided by EC-STM and RAS complements that of CV, supplies detailed information on the surface morphology, and correlates peaking Faraday currents to structural modifications. Furthermore, RAS and EC-STM show changes in the surface appearance in a potential range where no specific charge transfer is observed. CV indicates that the Cu(110) surface chemistry compares much better to that of amorphous Cu than to that of the more stable (100) and (111) surfaces, respectively.

9.
J Nanopart Res ; 11(7): 1521-1554, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21170135

RESUMO

This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures.

10.
Langmuir ; 24(14): 7269-77, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18558777

RESUMO

Label-free detection of DNA molecules on chemically vapor-deposited diamond surfaces is achieved with spectroscopic ellipsometry in the infrared and vacuum ultraviolet range. This nondestructive method has the potential to yield information on the average orientation of single as well as double-stranded DNA molecules, without restricting the strand length to the persistence length. The orientational analysis based on electronic excitations in combination with information from layer thicknesses provides a deeper understanding of biological layers on diamond. The pi-pi* transition dipole moments, corresponding to a transition at 4.74 eV, originate from the individual bases. They are in a plane perpendicular to the DNA backbone with an associated n-pi* transition at 4.47 eV. For 8-36 bases of single- and double-stranded DNA covalently attached to ultra-nanocrystalline diamond, the ratio between in- and out-of-plane components in the best fit simulations to the ellipsometric spectra yields an average tilt angle of the DNA backbone with respect to the surface plane ranging from 45 degrees to 52 degrees . We comment on the physical meaning of the calculated tilt angles. Additional information is gathered from atomic force microscopy, fluorescence imaging, and wetting experiments. The results reported here are of value in understanding and optimizing the performance of the electronic readout of a diamond-based label-free DNA hybridization sensor.


Assuntos
DNA/química , Diamante/química , Cristalização , DNA/ultraestrutura , Dessecação , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Óptica e Fotônica , Espectrofotometria , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...