Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 67: 102936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37875063

RESUMO

Oxidative stress is biochemically complex. Like primary colours, specific reactive oxygen species (ROS) and antioxidant inputs can be mixed to create unique "shades" of oxidative stress. Even a minimal redox module comprised of just 12 (ROS & antioxidant) inputs and 3 outputs (oxidative damage, cysteine-dependent redox-regulation, or both) yields over half a million "shades" of oxidative stress. The present paper proposes the novel hypothesis that: state-specific shades of oxidative stress, such as a discrete disease, are associated with distinct tell-tale cysteine oxidation patterns. The patterns are encoded by many parameters, from the identity of the oxidised proteins, the cysteine oxidation type, and magnitude. The hypothesis is conceptually grounded in distinct ROS and antioxidant inputs coalescing to produce unique cysteine oxidation outputs. And considers the potential biological significance of the holistic cysteine oxidation outputs. The literature supports the existence of state-specific cysteine oxidation patterns. Measuring and manipulating these patterns offer promising avenues for advancing oxidative stress research. The pattern inspired hypothesis provides a framework for understanding the complex biochemical nature of state-specific oxidative stress.


Assuntos
Antioxidantes , Cisteína , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo/fisiologia , Oxirredução
2.
Free Radic Biol Med ; 204: 252-265, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192685

RESUMO

The antibody-linked oxi-state assay (ALISA) for quantifying target-specific cysteine oxidation can benefit specialist and non-specialist users. Specialists can benefit from time-efficient analysis and high-throughput target and/or sample n-plex capacities. The simple and accessible "off-the-shelf" nature of ALISA brings the benefits of oxidative damage assays to non-specialists studying redox-regulation. Until performance benchmarking establishes confidence in the "unseen" microplate results, ALISA is unlikely to be widely adopted. Here, we implemented pre-set pass/fail criteria to benchmark ALISA by robustly evaluating immunoassay performance in diverse biological contexts. ELISA-mode ALISA assays were accurate, reliable, and sensitive. For example, the average inter-assay CV for detecting 20%- and 40%-oxidised PRDX2 or GAPDH standards was 4.6% (range: 3.6-7.4%). ALISA displayed target-specificity. Immunodepleting the target decreased the signal by ∼75%. Single-antibody formatted ALISA failed to quantify the matrix-facing alpha subunit of the mitochondrial ATP synthase. However, RedoxiFluor quantified the alpha subunit displaying exceptional performance in the single-antibody format. ALISA discovered that (1) monocyte-to-macrophage differentiation amplified PRDX2-specific cysteine oxidation in THP-1 cells and (2) exercise increased GAPDH-specific cysteine oxidation in human erythrocytes. The "unseen" microplate data were "seen-to-be-believed" via orthogonal visually displayed immunoassays like the dimer method. Finally, we established target (n = 3) and sample (n = 100) n-plex capacities in ∼4 h with 50-70 min hands-on time. Our work showcases the potential of ALISA to advance our understanding of redox-regulation and oxidative stress.


Assuntos
Benchmarking , Cisteína , Humanos , Cisteína/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Oxirredução , Estresse Oxidativo
3.
Bioessays ; 45(7): e2200248, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147790

RESUMO

A single protein molecule with one or more cysteine residues can occupy a plurality of unique residue and oxidation-chemotype specified proteoforms that I term oxiforms. In binary reduced or oxidised terms, one molecule with three cysteines will adopt one of eight unique oxiforms. Residue-defined sulfur chemistry endows specific oxiforms with distinct functionally-relevant biophysical properties (e.g., steric effects). Their emergent complexity means a functionally-relevant effect may only manifest when multiple cysteines are oxidised. Like how mixing colours makes new shades, combining discrete redox chemistries-colours-can create a kaleidoscope of oxiform hues. The sheer diversity of oxiforms co-existing within the human body provides a biological basis for redox heterogeneity. Of evolutionary significance, oxiforms may enable individual cells to mount a broad spectrum of responses to the same stimulus. Their biological significance, however plausible, is speculative because protein-specific oxiforms remain essentially unexplored. Excitingly, pioneering new techniques can push the field into uncharted territory by quantifying oxiforms. The oxiform concept can advance our understanding of redox-regulation in health and disease.


Assuntos
Cisteína , Proteínas , Humanos , Cisteína/química , Cisteína/metabolismo , Cor , Proteínas/metabolismo , Oxirredução
4.
Am J Physiol Cell Physiol ; 324(5): C1141-C1157, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689672

RESUMO

Duchenne muscular dystrophy (DMD) is associated with distinct mitochondrial stress responses. Here, we aimed to determine whether the prospective mitochondrial-enhancing compound Olesoxime, prevents early-stage mitochondrial stress in limb and respiratory muscle from D2.mdx mice using a proof-of-concept short-term regimen spanning 10-28 days of age. As mitochondrial-cytoplasmic energy transfer occurs via ATP- or phosphocreatine-dependent phosphate shuttling, we assessed bioenergetics with or without creatine in vitro. We observed that disruptions in Complex I-supported respiration and mH2O2 emission in D2.mdx quadriceps and diaphragm were amplified by creatine demonstrating mitochondrial creatine insensitivity manifests ubiquitously and early in this model. Olesoxime selectively rescued or maintained creatine sensitivity in both muscles, independent of the abundance of respiration-related mitochondrial proteins or mitochondrial creatine kinase cysteine oxidation in quadriceps. Mitochondrial calcium retention capacity and glutathione were altered in a muscle-specific manner in D2.mdx but were generally unchanged by Olesoxime. Treatment reduced serum creatine kinase (muscle damage) and preserved cage hang-time, microCT-based volumes of lean compartments including whole body, hindlimb and bone, recovery of diaphragm force after fatigue, and cross-sectional area of diaphragm type IIX fiber, but reduced type I fibers in quadriceps. Grip strength, voluntary wheel-running and fibrosis were unaltered by Olesoxime. In summary, locomotor and respiratory muscle mitochondrial creatine sensitivities are lost during early stages in D2.mdx mice but are preserved by short-term treatment with Olesoxime in association with specific indices of muscle quality suggesting early myopathy in this model is at least partially attributed to mitochondrial stress.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Creatina/metabolismo , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Diafragma/metabolismo , Músculo Esquelético , Modelos Animais de Doenças
5.
Trials ; 23(1): 1026, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539791

RESUMO

BACKGROUND: Regular participation in resistance exercise is known to have broad-ranging health benefits and for this reason is prominent in the current physical activity guidelines. Recovery after such exercise is important for several populations across the age range and nutritional strategies to enhance recovery and modulate post-exercise physiological processes are widely studied, yet effective strategies remain elusive. Vitamin K2 supplementation has emerged as a potential candidate, and the aim of the current study, therefore, is to test the hypothesis that vitamin K2 supplementation can accelerate recovery, via modulation of the underlying physiological processes, following a bout of resistance exercise in young and older adults. METHODS: The current study is a two-arm randomised controlled trial which will be conducted in 80 (40 young (≤40 years) and 40 older (≥65 years)) adults to compare post-exercise recovery in those supplemented with vitamin K2 or placebo for a 12-week period. The primary outcome is muscle strength with secondary outcomes including pain-free range of motion, functional abilities, surface electromyography (sEMG) and markers of inflammation and oxidative stress. DISCUSSION: Ethical approval has been granted by the College of Medical Veterinary and Life Sciences Ethical Committee at the University of Glasgow (Project No 200190189) and recruitment is ongoing. Study findings will be disseminated through a presentation at scientific conferences and in scientific journals. TRIAL REGISTRATION: ClinicialTrials.gov NCT04676958. Prospectively registered on 21 December 2020.


Assuntos
Treinamento Resistido , Humanos , Idoso , Vitamina K 2/farmacologia , Exercício Físico , Força Muscular , Músculo Esquelético , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Free Radic Biol Med ; 182: 73-78, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35217176

RESUMO

New readily accessible systemic redox biomarkers are needed to understand the biological roles reactive oxygen species (ROS) play in humans because overtly flawed, technically fraught, and unspecific assays severely hamper translational progress. The antibody-linked oxi-state assay (ALISA) makes it possible to develop valid ROS-sensitive target-specific protein thiol redox state biomarkers in a readily accessible microplate format. Here, we used a maximal exercise bout to disrupt redox homeostasis in a physiologically meaningful way to determine whether the catalytic core of the serine/threonine protein phosphatase PP2A is a candidate systemic redox biomarker in human erythrocytes. We reasoned that: constitutive oxidative stress (e.g., haemoglobin autoxidation) would sensitise erythrocytes to disrupted ion homeostasis as manifested by increased oxidation of the ion regulatory phosphatase PP2A. Unexpectedly, an acute bout of maximal exercise lasting ~16 min decreased PP2A-specific reversible thiol oxidation (redox ratio, rest: 0.46; exercise: 0.33) without changing PP2A content (rest: 193 pg/ml; exercise: 191 pg/ml). The need for only 3-4 µl of sample to perform ALISA means PP2A-specific reversible thiol oxidation is a capillary-fingertip blood-compatible candidate redox biomarker. Consistent with biologically meaningful redox regulation, thiol reductant-inducible PP2A activity was significantly greater (+10%) at rest compared to exercise. We establish a route to developing new readily measurable protein thiol redox biomarkers for understanding the biological roles ROS play in humans.


Assuntos
Estresse Oxidativo , Compostos de Sulfidrila , Biomarcadores/metabolismo , Eritrócitos/metabolismo , Humanos , Oxirredução , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo
7.
Free Radic Biol Med ; 181: 118-129, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131446

RESUMO

Unravelling how reactive oxygen species regulate fundamental biological processes is hampered by the lack of an accessible microplate technique to quantify target-specific protein thiol redox state in percentages and moles. To meet this unmet need, we present RedoxiFluor. RedoxiFluor uses two spectrally distinct thiol-reactive fluorescent conjugated reporters, a capture antibody, detector antibody and a standard curve to quantify target-specific protein thiol redox state in relative percentage and molar terms. RedoxiFluor can operate in global mode to assess the redox state of the bulk thiol proteome and can simultaneously assess the redox state of multiple targets in array mode. Extensive proof-of-principle experiments robustly validate the assay principle and the value of each RedoxiFluor mode in diverse biological contexts. In particular, array mode RedoxiFluor shows that the response of redox-regulated phosphatases to lipopolysaccharide (LPS) differs in human monocytes. Specifically, LPS increased PP2A-, SHP1-, PTP1B-, and CD45-specific reversible thiol oxidation without changing the redox state of calcineurin, PTEN, and SHP2. The relative percentage and molar terms are interpretationally useful and define the most complete and extensive microplate redox analysis achieved to date. RedoxiFluor is a new antibody technology with the power to quantify relative target-specific protein thiol redox state in percentages and moles relative to the bulk thiol proteome and selected other targets in a widely accessible, simple and easily implementable microplate format.


Assuntos
Estresse Oxidativo , Compostos de Sulfidrila , Humanos , Oxirredução , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo
8.
Free Radic Biol Med ; 174: 272-280, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418513

RESUMO

Measuring protein thiol redox state is central to understanding redox signalling in health and disease. The lack of a microplate assay to measure target specific protein thiol redox state rate-limits progress on accessibility grounds: redox proteomics is inaccessible to most. Developing a microplate assay is important for accelerating discovery by widening access to protein thiol redox biology. Beyond accessibility, enabling high throughput time- and cost-efficient microplate analysis is important. To meet the pressing need for a microplate assay to measure protein thiol redox state, we present the Antibody-Linked Oxi-State Assay (ALISA). ALISA uses a covalently bound capture antibody to bind a thiol-reactive fluorescent conjugated maleimide (F-MAL) decorated target. The capture antibody-target complex is labelled with an amine-reactive fluorescent N-hydroxysuccinimide ester (F-NHS) to report total protein. The covalent bonds that immobilise the capture antibody to the epoxy group functionalised microplate enable one to selectively elute the target. Target specific redox state is ratiometrically calculated as: F-MAL (i.e., reversible thiol oxidation)/F-NHS (i.e., total protein). After validating the assay principle (i.e., increased target specific reversible thiol oxidation increases the ratio), we used ALISA to determine whether fertilisation-a fundamental biological process-changes Akt, a serine/threonine protein kinase, specific reversible thiol oxidation. Fertilisation significantly decreases Akt specific reversible thiol oxidation in Xenopus laevis 2-cell zygotes compared to unfertilised eggs. ALISA is an accessible microplate assay to advance knowledge of protein thiol redox biology in health and disease.


Assuntos
Estresse Oxidativo , Compostos de Sulfidrila , Oxirredução , Proteínas/metabolismo , Proteômica
9.
Antioxidants (Basel) ; 9(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003362

RESUMO

The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria-a major presumptive oxidative stressor-produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.

10.
Redox Biol ; 36: 101673, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32810739

RESUMO

High-intensity exercise damages mitochondrial DNA (mtDNA) in skeletal muscle. Whether MitoQ - a redox active mitochondrial targeted quinone - can reduce exercise-induced mtDNA damage is unknown. In a double-blind, randomized, placebo-controlled design, twenty-four healthy male participants consisting of two groups (placebo; n = 12, MitoQ; n = 12) performed an exercise trial of 4 x 4-min bouts at 90-95% of heart rate max. Participants completed an acute (20 mg MitoQ or placebo 1-h pre-exercise) and chronic (21 days of supplementation) phase. Blood and skeletal muscle were sampled immediately pre- and post-exercise and analysed for nuclear and mtDNA damage, lipid hydroperoxides, lipid soluble antioxidants, and the ascorbyl free radical. Exercise significantly increased nuclear and mtDNA damage across lymphocytes and muscle (P < 0.05), which was accompanied with changes in lipid hydroperoxides, ascorbyl free radical, and α-tocopherol (P < 0.05). Acute MitoQ treatment failed to impact any biomarker likely due to insufficient initial bioavailability. However, chronic MitoQ treatment attenuated nuclear (P < 0.05) and mtDNA damage in lymphocytes and muscle tissue (P < 0.05). Our work is the first to show a protective effect of chronic MitoQ supplementation on the mitochondrial and nuclear genomes in lymphocytes and human muscle tissue following exercise, which is important for genome stability.


Assuntos
Antioxidantes , DNA Mitocondrial , Antioxidantes/metabolismo , Antioxidantes/farmacologia , DNA Mitocondrial/metabolismo , Método Duplo-Cego , Humanos , Masculino , Mitocôndrias/metabolismo , Compostos Organofosforados/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/metabolismo , Ubiquinona/farmacologia
11.
Antioxidants (Basel) ; 9(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326525

RESUMO

To understand oxidative stress, antioxidant defense, and redox signaling in health and disease it is essential to assess protein thiol redox state. Protein thiol redox state is seldom assessed immunologically because of the inability to distinguish reduced and reversibly oxidized thiols by Western blotting. An underappreciated opportunity exists to use Click PEGylation to realize the transformative power of simple, time and cost-efficient immunological techniques. Click PEGylation harnesses selective, bio-orthogonal Click chemistry to separate reduced and reversibly oxidized thiols by selectively ligating a low molecular weight polyethylene glycol moiety to the redox state of interest. The resultant ability to disambiguate reduced and reversibly oxidized species by Western blotting enables Click PEGylation to assess protein thiol redox state. In the present review, to enable investigators to effectively harness immunological techniques to assess protein thiol redox state we critique the chemistry, promise and challenges of Click PEGylation.

12.
Antioxidants (Basel) ; 9(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150908

RESUMO

Oocytes are postulated to repress the proton pumps (e.g., complex IV) and ATP synthase to safeguard mitochondrial DNA homoplasmy by curtailing superoxide production. Whether the ATP synthase is inhibited is, however, unknown. Here we show that: oligomycin sensitive ATP synthase activity is significantly greater (~170 vs. 20 nmol/min-1/mg-1) in testes compared to oocytes in Xenopus laevis (X. laevis). Since ATP synthase activity is redox regulated, we explored a regulatory role for reversible thiol oxidation. If a protein thiol inhibits the ATP synthase, then constituent subunits must be reversibly oxidised. Catalyst-free trans-cyclooctene 6-methyltetrazine (TCO-Tz) immunocapture coupled to redox affinity blotting reveals several subunits in F1 (e.g., ATP-α-F1) and Fo (e.g., subunit c) are reversibly oxidised. Catalyst-free TCO-Tz Click PEGylation reveals significant (~60%) reversible ATP-α-F1 oxidation at two evolutionary conserved cysteine residues (C244 and C294) in oocytes. TCO-Tz Click PEGylation reveals ~20% of the total thiols in the ATP synthase are substantially oxidised. Chemically reversing thiol oxidation significantly increased oligomycin sensitive ATP synthase activity from ~12 to 100 nmol/min-1/mg-1 in oocytes. We conclude that reversible thiol oxidation inhibits the mitochondrial ATP synthase in X. laevis oocytes.

13.
Redox Biol ; 26: 101258, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31234016

RESUMO

Using non-reducing Western blotting to assess protein thiol redox state is challenging because most reduced and oxidised forms migrate at the same molecular weight and are, therefore, indistinguishable. While copper catalysed Click chemistry can be used to ligate a polyethylene glycol (PEG) moiety termed Click PEGylation to mass shift the reduced or oxidised form as desired, the potential for copper catalysed auto-oxidation is problematic. Here we define a catalyst-free trans-cyclooctene-methyltetrazine (TCO-Tz) inverse electron demand Diels Alder chemistry approach that affords rapid (k ~2000 M-1 s-1), selective and bio-orthogonal Click PEGylation. We used TCO-Tz Click PEGylation to investigate how fertilisation impacts reversible mitochondrial ATP synthase F1-Fo sub-unit alpha (ATP-α-F1) oxidation-an established molecular correlate of impaired enzyme activity-in Xenopus laevis. TCO-Tz Click PEGylation studies reveal substantial (~65%) reversible ATP-α-F1 oxidation at evolutionary conserved cysteine residues (i.e., C244 and C294) before and after fertilisation. A single thiol is, however, preferentially oxidised likely due to greater solvent exposure during the catalytic cycle. Selective reduction experiments show that: S-glutathionylation accounts for ~50-60% of the reversible oxidation observed, making it the dominant oxidative modification type. Intermolecular disulphide bonds may also contribute due to their relative stability. Substantial reversible ATP-α-F1 oxidation before and after fertilisation is biologically meaningful because it implies low mitochondrial F1-Fo ATP synthase activity. Catalyst-free TCO-Tz Click PEGylation is a valuable new tool to interrogate protein thiol redox state in health and disease.


Assuntos
Química Click/métodos , Mitocôndrias/química , ATPases Mitocondriais Próton-Translocadoras/química , Óvulo/química , Polietilenoglicóis/química , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/química , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Animais , Dissulfetos/química , Embrião não Mamífero , Feminino , Fertilização in vitro , Glutationa/metabolismo , Compostos Heterocíclicos com 1 Anel/química , Masculino , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Óvulo/citologia , Óvulo/enzimologia , Oxirredução , Filogenia , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Xenopus laevis/classificação , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
14.
Free Radic Biol Med ; 132: 24-32, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30219702

RESUMO

Increased oxidative damage and disrupted redox signalling are consistently associated with age-related loss of skeletal muscle mass and function. Redox signalling can directly regulate biogenesis and degradation pathways and indirectly via activation of key transcription factors. Contracting skeletal muscle fibres endogenously generate free radicals (e.g. superoxide) and non-radical derivatives (e.g. hydrogen peroxide). Exercise induced redox signalling can promote beneficial adaptive responses that are disrupted by age-related redox changes. Identifying and quantifying the redox signalling pathways responsible for successful adaptation to exercise makes skeletal muscle an attractive physiological model for redox proteomic approaches. Site specific identification of the redox modification and quantification of site occupancy in the context of protein abundance remains a crucial concept for redox proteomics approaches. Notwithstanding, the technical limitations associated with skeletal muscle for proteomic analysis, we discuss current approaches for the identification and quantification of transient and stable redox modifications that have been employed to date in ageing research. We also discuss recent developments in proteomic approaches in skeletal muscle and potential implications and opportunities for investigating disrupted redox signalling in skeletal muscle ageing.


Assuntos
Degeneração Macular/metabolismo , Músculo Esquelético/fisiologia , Proteômica/métodos , Adaptação Fisiológica , Animais , Humanos , Contração Muscular , Oxirredução , Estresse Oxidativo , Transdução de Sinais
15.
Eur J Sport Sci ; 19(1): 71-85, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30110239

RESUMO

Exercise-induced muscle damage (EIMD) is characterized by symptoms that present both immediately and for up to 14 days after the initial exercise bout. The main consequence of EIMD for the athlete is the loss of skeletal muscle function and soreness. As such, numerous nutrients and functional foods have been examined for their potential to ameliorate the effects of EIMD and accelerate recovery, which is the purpose of many nutritional strategies for the athlete. However, the trade-off between recovery and adaptation is rarely considered. For example, many nutritional interventions described in this review target oxidative stress and inflammation, both thought to contribute to EIMD but are also crucial for the recovery and adaptation process. This calls into question whether long term administration of supplements and functional foods used to target EIMD is indeed best practice. This rapidly growing area of sports nutrition will benefit from careful consideration of the potential hormetic effect of long term use of nutritional aids that ameliorate muscle damage. This review provides a concise overview of what EIMD is, its causes and consequences and critically evaluates potential nutritional strategies to ameliorate EIMD. We present a pragmatic practical summary that can be adopted by practitioners and direct future research, with the purpose of pushing the field to better consider the fine balance between recovery and adaptation and the potential that nutritional interventions have in modulating this balance.


Assuntos
Exercício Físico , Músculo Esquelético/fisiopatologia , Mialgia/prevenção & controle , Fenômenos Fisiológicos da Nutrição Esportiva , Adaptação Fisiológica , Atletas , Dieta , Suplementos Nutricionais , Alimento Funcional , Humanos , Inflamação , Músculo Esquelético/fisiologia , Estresse Oxidativo , Vitaminas
17.
Bioessays ; 40(7): e1800031, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29869337

RESUMO

No overarching hypotheses tie the basic mechanisms of mitochondrial reactive oxygen species (ROS) production to activity dependent synapse pruning-a fundamental biological process in health and disease. Neuronal activity divergently regulates mitochondrial ROS: activity decreases whereas inactivity increases their production, respectively. Placing mitochondrial ROS as innate synaptic activity sentinels informs the novel hypothesis that: (1) at an inactive synapse, increased mitochondrial ROS production initiates intrinsic apoptosis dependent pruning; and (2) at an active synapse, decreased mitochondrial ROS production masks intrinsic apoptosis dependent pruning. Immature antioxidant defense may enable the developing brain to harness mitochondrial ROS to prune weak synapses. Beyond development, endogenous antioxidant defense constrains mitochondrial (ROS) to mask pruning. Unwanted age-related synapse loss may arise when mitochondrial ROS aberrantly recapitulate developmental pruning. Placing mitochondrial ROS with their hands on the shears is beneficial in early but deleterious in later life.


Assuntos
Mitocôndrias/genética , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sinapses/metabolismo , Apoptose/genética , Humanos , Mitocôndrias/metabolismo , Resistência ao Cisalhamento/fisiologia
18.
Redox Biol ; 16: 344-351, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29587245

RESUMO

Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP5+ and/or MnTnBuOE-2-PyP5+ blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS-using mitochondria-targeted Paraquat (MitoPQ)-recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP5+. We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features.


Assuntos
Mitocôndrias/metabolismo , Junção Neuromuscular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sinapses/fisiologia , Animais , Antioxidantes/metabolismo , Bungarotoxinas/administração & dosagem , Larva/efeitos dos fármacos , Larva/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Atividade Motora/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Paraquat/metabolismo , Venenos de Aranha/administração & dosagem , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Xenopus laevis/metabolismo , Xenopus laevis/fisiologia
19.
Redox Biol ; 15: 490-503, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413961

RESUMO

The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.


Assuntos
Antioxidantes/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Encéfalo/fisiologia , Radicais Livres/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo
20.
Cell Chem Biol ; 24(10): 1285-1298.e12, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28890317

RESUMO

Mitochondrial superoxide (O2⋅-) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅-, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅- probe, MitoNeoD, which can assess O2⋅- changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅--sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅- over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅- from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅- production in health and disease.


Assuntos
Mitocôndrias/metabolismo , Sondas Moleculares/metabolismo , Superóxidos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , DNA/química , DNA/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Modelos Moleculares , Sondas Moleculares/química , Conformação de Ácido Nucleico , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...