Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 11(3): 979-87, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15612054

RESUMO

A general synthetic method for the preparation of nanostructured materials with large surface area was developed by using nanoparticle building blocks. The preparation route involves the self-assembly of functionalized nanoparticles in a liquid-crystal phase. These nanoparticles are functionalized by using difunctional amino acid species to provide suitable interactions with the template. Optimum interactions for self-assembly of the nanoparticles in the liquid-crystal phase were achieved with one -NH2 group anchored to the nanoparticle surface per 25 A(2). To maximize the surface area of these materials, the wall thicknesses are adjusted so that they are composed of a monolayer of nanoparticles. To form such materials, numerous parameters have to be controlled such as the relative volume fraction of the nanoparticles and the template and size matching between the hydrophilic component of the copolymer and nanoparticles. The surface functionalization renders our synthetic route independent of the nanoparticles and allows us to prepare a variety of nanostructured composite materials that consist of a juxtaposition of different discrete oxide nanoparticles. Examples of such materials include CeO2, ZrO2, and CeO2-Al(OH)3 composites.


Assuntos
Hidróxido de Alumínio/química , Cério/química , Nanoestruturas/química , Zircônio/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...