Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine Growth Factor Rev ; 26(2): 221-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25466632

RESUMO

Several immunomodulatory treatments are currently available for relapsing-remitting forms of multiple sclerosis (RRMS). Interferon beta (IFN) was the first therapeutic intervention able to modify the course of the disease and it is still the most used first-line treatment in RRMS. Though two decades have passed since IFN-ß was introduced in the management of MS, it remains a valid approach because of its good benefit/risk profile. This is witnessed by new efforts of pharmaceutical industry to improve this line: a PEGylated form of subcutaneous IFN-ß 1a, (Plegridy(®)) with a longer half-life, has been recently approved in RRMS. This review will survey the various stages of the use of type I IFN in MS, with special attention to the effect of the treatment on the supposed viral etiologic factors associated to the disease. The antiviral activities of IFN (that initially prompted its use as immunomodulatory agent in MS), and the mounting evidences in favor of a viral etiology in MS, allowed us to outline a re-appraisal from etiology to therapy and back.


Assuntos
Interferon beta/imunologia , Interferon beta/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/virologia , Polietilenoglicóis/uso terapêutico , Adjuvantes Imunológicos , Estudo de Associação Genômica Ampla , Meia-Vida , Herpesvirus Humano 4/patogenicidade , Humanos , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla/imunologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
2.
Leukemia ; 26(11): 2343-52, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22614176

RESUMO

The discovery of microRNA (miR) represents a novel paradigm in RNA-based regulation of gene expression and their dysregulation has become a hallmark of many a tumor. In virally associated cancers, the host-pathogen interaction could involve alteration in miR expression. Epstein-Barr virus (EBV)-encoded EBNA2 is indispensable for the capacity of the virus to transform B cells in vitro. Here, we studied how it affects cellular miRs. Extensive miR profiling of the virus-infected and EBNA2-transfected B lymphoma cells revealed that oncomiR miR-21 is positively regulated by this viral protein. Conversely, Burkitt's lymphoma (BL) cell lines infected with EBNA2 lacking P3HR1 strain did not show any increase in miR-21. EBNA2 increased phosphorylation of AKT and this was directly correlated with increased miR-21. In contrast, miR-146a was downregulated by EBNA2 in B lymphoma cells. Low miR-146a expression correlates with an elevated level of IRAK1 and type I interferon in EBNA2 transfectants. Taken together, the present data suggest that EBNA2 might contribute to EBV-induced B-cell transformation by altering miR expression and in particular by increasing oncomiR-like miR-21 and by affecting the antiviral responses of the innate immune system through downregulation of its key regulator miR-146a.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/fisiologia , Herpesvirus Humano 4/genética , MicroRNAs/fisiologia , Proteínas Virais/fisiologia , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Proteínas Virais/genética
3.
Neurology ; 76(24): 2079-88, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21670437

RESUMO

OBJECTIVES: Juvenile dermatomyositis (JDM), adult dermatomyositis, and polymyositis (PM) are idiopathic inflammatory myopathies (IIMs) characterized by muscle infiltration and specific muscle fiber alterations. They are thought to have an autoimmune etiology, but triggering factors, and how immunologic attack induces muscle weakness, remain unknown. Recent evidence suggests a key role for type I interferon (IFN)-mediated innate immunity in dermatomyositis, which we explored in JDM, dermatomyositis, and PM by gene expression profiling, and other methods. METHODS: Ten IIM and 5 control muscle biopsies were assessed for expression of approximately 16,000 genes by microarray; 37 additional IIM, 10 dystrophinopathic, and 14 nonmyopathic control muscles were studied for type I IFN-dependent genes, and Toll-like receptor (TLR) expression by immunochemistry and PCR. RESULTS: Type I IFN-dependent transcripts were significantly upregulated in IIM muscles compared to controls; in JDM the most expressed were ISG15 (408-fold), IFIT3 (261-fold), MX1 (99-fold), and IRF7 (37-fold). IFN-ß (but not IFN-α) transcripts were upregulated in PM as well as dermatomyositis/JDM. TLR3 was upregulated particularly in JDM, being localized on vascular endothelial cells, muscle infiltrating cells (mainly myeloid dendritic cells), and regenerating myofibers; TLR7 and TLR9 proteins were present in IIM (prominently in PM), mainly on cell infiltrates, particularly plasma cells, and on some injured myofibers. CONCLUSIONS: IFN-ß and type I IFN-induced molecules are involved in PM as well as JDM/dermatomyositis. Endosomal TLRs (effectors of innate immunity) are also involved (but differently) in the 3 conditions, further suggesting viral involvement, although TLR activation could be secondary to tissue damage.


Assuntos
Interferon Tipo I/imunologia , Miosite/imunologia , Receptores Toll-Like/imunologia , Dermatomiosite/genética , Dermatomiosite/imunologia , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/genética , Análise em Microsséries , Músculo Esquelético/citologia , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Miosite/genética , Polimiosite/genética , Polimiosite/imunologia , Receptores Toll-Like/genética
4.
Cell Mol Biol (Noisy-le-grand) ; 52(1): 77-87, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16914099

RESUMO

Initially described for their antiviral activities, type I Interferons are now recognized as central regulatory elements of the immune response, primarily for their effect on the differentiation of monocytes into dendritic cells and osteoclasts. They are routinely used in clinic for the treatment of several diseases, including viral hepatitis, multiple sclerosis and several forms of cancer. Interferons are however not devoid of toxic effects when high doses are administered to patients, indicating that interferon action must be timely and spatially down regulated. We review here the molecular mechanisms which have been described to shut off the interferon initiated signals.


Assuntos
Regulação para Baixo , Interferon Tipo I/metabolismo , Animais , Humanos , Fatores Reguladores de Interferon/metabolismo , Janus Quinase 1 , Proteínas de Membrana/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor de Interferon alfa e beta , Receptores de Interferon/metabolismo , Fatores de Transcrição STAT/química , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo
5.
Gut ; 54(11): 1558-64, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16105891

RESUMO

BACKGROUND AND AIMS: Cholera toxin B subunit (CT-B) is a powerful modulator of immune responses. The authors have previously demonstrated that oral administration of recombinant CT-B (rCT-B) is able to prevent and cure the Crohn's disease (CD)-like trinitrobenzene sulfonic acid (TNBS) mediated colitis. In this study they extended their observations and examined if rCT-B interferes with the molecular signaling underlying the Th1 type response both in TNBS colitis and in ex vivo human CD explants. METHODS: TNBS treated mice were fed with rCT-B, and IFN-gamma and IL-12 production by colonic lamina propria mononuclear cells (LPMC) was examined by ELISA. In vitro culture of mucosal explants from CD patients and non-inflammatory bowel disease controls, pre-incubated with rCT-B, were examined for IFN-gamma and IL-12 production by ELISA and semiquantitative reverse transcription polymerase chain reactions. STAT-1, -4, -6 activation and T-bet expression were examined following rCT-B treatment by western blotting both in TNBS treated mice and in human mucosal explants. RESULTS: rCT-B significantly reduced IL-12 and IFN-gamma secretion by LPMC from TNBS treated mice. Consistent with this, rCT-B inhibited both STAT-4 and STAT-1 activation and downregulated T-bet expression. Inhibition of Th1 signaling by CT-B associated with no change in IL-4 synthesis and expression of active STAT-6 indicating that rCT-B does not enhance Th2 cell responses. Moreover, in vitro treatment of CD mucosal explants with rCT-B resulted in reduced secretion of IL-12/IFN-gamma and inhibition of STAT-4/STAT-1 activation and T-bet expression. CONCLUSIONS: These studies indicate that CT-B inhibits mucosal Th1 cell signaling and suggest that rCT-B may be a promising candidate for CD therapy.


Assuntos
Toxina da Cólera/imunologia , Colite/imunologia , Doença de Crohn/imunologia , Interferon gama/biossíntese , Interleucina-12/biossíntese , Adulto , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Fosforilação , Proteínas Recombinantes/imunologia , Fator de Transcrição STAT4 , Transdução de Sinais/imunologia , Células Th1/imunologia , Transativadores/metabolismo
6.
J Leukoc Biol ; 70(6): 950-60, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11739558

RESUMO

The heterodimeric interferon (IFN)-gamma receptor (IFN-gammaR) is formed of two chains. Here we show that the binding chain (IFN-gammaR1) was highly expressed on the membranes of T, B, and myeloid cells. Conversely, the transducing chain (IFN-gammaR2) was highly expressed on the surfaces of myeloid cells, moderately expressed on B cells, and poorly expressed on the surfaces of T cells. Differential cell membrane expression of IFN-gammaR2 determined the number of receptor complexes that transduced the IFN-gamma signal and resulted in a different response to IFN-gamma. After IFN-gamma stimulation, high IFN-gammaR2 membrane expression induced rapid activation of signal transducer and activator of transcription-1 (STAT-1) and high levels of interferon regulatory factor-1 (IRF-1), which then triggered the apoptotic program. By contrast, low cell membrane expression resulted in slow activation of STAT-1, lower levels of IRF-1, and induction of proliferation. Because the forced expression of IFN-gammaR2 on T cells switched their response to IFN-gamma from proliferative to apoptotic, we concluded that the surface expression of IFN-gammaR2 determines whether a cell stimulated by IFN-gamma undergoes proliferation or apoptosis.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Células Mieloides/imunologia , Receptores de Interferon/imunologia , Linfócitos T/imunologia , Linfócitos B/citologia , Divisão Celular/imunologia , Células Cultivadas , Proteínas de Ligação a DNA/imunologia , Humanos , Fator Regulador 1 de Interferon , Interferon gama/imunologia , Células Mieloides/citologia , Fosfoproteínas/imunologia , Fator de Transcrição STAT1 , Transdução de Sinais/imunologia , Linfócitos T/citologia , Transativadores/imunologia , Receptor de Interferon gama
7.
Biochem J ; 360(Pt 2): 285-94, 2001 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11716756

RESUMO

Numerous transcription factors allow haematopoietic cells to respond to lineage- and stage-specific cytokines and to act as their effectors. It is increasingly evident that the interferon regulatory factor-1 (IRF-1) transcription factor can selectively regulate different sets of genes depending on the cell type and/or the nature of cellular stimuli, evoking distinct responses in each. In the present study, we investigated mechanisms underlying the differentiation-inducing properties of granulocytic colony-stimulating factor (G-CSF) and whether IRF transcription factors are functionally relevant in myeloid differentiation. Both normal human progenitors and murine 32Dcl3 myeloblasts induced to differentiate along the granulocytic pathway showed an up-regulation of IRF-1 expression. Ectopic expression of IRF-1 did not abrogate the growth factor requirement of 32Dcl3 cells, although a small percentage of cells that survived cytokine deprivation differentiated fully to neutrophils. Moreover, in the presence of G-CSF, granulocytic differentiation of IRF-1-expressing cells was accelerated, as assessed by morphology and expression of specific differentiation markers. Down-modulation of c-Myb protein and direct stimulation of lysozyme promoter activity by IRF-1 were also observed. Conversely, constitutive expression of IRF-2, a repressor of IRF-1 transcriptional activity, completely abrogated the G-CSF-induced neutrophilic maturation. We conclude that IRF-1 exerts a pivotal role in granulocytic differentiation and that its induction by G-CSF represents a limiting step in the early events of differentiation.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Granulócitos/citologia , Interferon gama/fisiologia , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Proteínas Repressoras , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Adulto , Animais , Biomarcadores/análise , Diferenciação Celular/genética , Linhagem Celular , Meios de Cultivo Condicionados , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Regulação para Baixo/genética , Ativação Enzimática/genética , Regulação da Expressão Gênica , Vetores Genéticos , Fator Estimulador de Colônias de Granulócitos/antagonistas & inibidores , Fator Estimulador de Colônias de Granulócitos/deficiência , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/fisiologia , Granulócitos/fisiologia , Inibidores do Crescimento/fisiologia , Substâncias de Crescimento/deficiência , Hematopoese/genética , Humanos , Fator Regulador 1 de Interferon , Fator Regulador 2 de Interferon , Camundongos , Muramidase/genética , Muramidase/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Ligação Proteica/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-myb/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myb/biossíntese , Proteínas Proto-Oncogênicas c-myb/genética , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição/fisiologia , Transfecção
8.
J Immunol ; 166(12): 7033-41, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11390447

RESUMO

Macrophages and dendritic cells (DC) play an essential role in the initiation and maintenance of immune response to pathogens. To analyze early interactions between Mycobacterium tuberculosis (Mtb) and immune cells, human peripheral blood monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) were infected with Mtb. Both cells were found to internalize the mycobacteria, resulting in the activation of MDM and maturation of MDDC as reflected by enhanced expression of several surface Ags. After Mtb infection, the proinflammatory cytokines TNF-alpha, IL-1, and IL-6 were secreted mainly by MDM. As regards the production of IFN-gamma-inducing cytokines, IL-12 and IFN-alpha, was seen almost exclusively from infected MDDC, while IL-18 was secreted preferentially by macrophages. Moreover, Mtb-infected MDM also produce the immunosuppressive cytokine IL-10. Because IL-10 is a potent inhibitor of IL-12 synthesis from activated human mononuclear cells, we assessed the inhibitory potential of this cytokine using soluble IL-10R. Neutralization of IL-10 restored IL-12 secretion from Mtb-infected MDM. In line with these findings, supernatants from Mtb-infected MDDC induced IFN-gamma production by T cells and enhanced IL-18R expression, whereas supernatants from MDM failed to do that. Neutralization of IFN-alpha, IL-12, and IL-18 activity in Mtb-infected MDDC supernatants by specific Abs suggested that IL-12 and, to a lesser extent, IFN-alpha and IL-18 play a significant role in enhancing IFN-gamma synthesis by T cells. During Mtb infection, macrophages and DC may have different roles: macrophages secrete proinflammatory cytokines and induce granulomatous inflammatory response, whereas DC are primarily involved in inducing antimycobacterial T cell immune response.


Assuntos
Citocinas/genética , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Regulação da Expressão Gênica/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Biomarcadores/análise , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/biossíntese , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Interferon gama/biossíntese , Interleucina-18/metabolismo , Subunidade alfa de Receptor de Interleucina-18 , Cinética , Ativação Linfocitária , Ativação de Macrófagos , Macrófagos/metabolismo , Receptores de Interleucina/biossíntese , Receptores de Interleucina-18 , Linfócitos T/metabolismo , Regulação para Cima/imunologia
9.
Int Immunol ; 12(7): 977-85, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10882409

RESUMO

NO is a labile radical involved in several immunological, antimicrobial and inflammatory processes. In macrophages, NO formation is catalyzed by the cytokine-inducible enzyme inducible NO synthase (iNOS). The importance of IFN regulatory factor (IRF)-1 and of the signal transducers and activators of transcription (STAT)-1 for the induction of iNOS gene expression in response to IFN-gamma has been well defined. Here, we investigated the molecular events responsible for the inhibition of iNOS gene expression by IL-4 in the murine macrophage cell line RAW264.7. Unidirectional deletion analysis on iNOS promoter demonstrated that an IFN-stimulated responsive element (ISRE), contained in the -980 to -765 bp region of the iNOS promoter, may be involved in the IL-4-mediated inhibition of IFN-gamma-inducible iNOS transcription. Accordingly, the IFN-gamma-induced binding activity of IRF-1 to the ISRE sequence was reduced in cells pre-treated with IL-4, while the binding activity of STAT-1 to the STAT-binding element (SBE) within the same region of the iNOS promoter remained unaffected. Moreover, IL-4 even down-regulated IFN-gamma-inducible expression of IRF-1 mRNA. This could be related to a transcriptional mechanism by which IL-4 and IFN-gamma differentially influence the trans-acting activity of the STAT factors binding to SBE within the IRF-1 promoter. SBE is targeted by IFN-gamma-inducible STAT-1 and by IL-4-inducible STAT-6. Although STAT-6 has no trans-acting function on iNOS gene expression, it is able to inhibit the IFN-gamma-induced expression of IRF-1. Thus, IL-4 may down-regulate IFN-gamma-inducible iNOS transcription by activation of STAT-6 which in turn inhibits IRF-1 expression.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Interleucina-4/farmacologia , Óxido Nítrico Sintase/genética , Fosfoproteínas/fisiologia , Animais , Linhagem Celular , Fator Regulador 1 de Interferon , Camundongos , Óxido Nítrico Sintase Tipo II , Regiões Promotoras Genéticas , Fatores de Transcrição/fisiologia , Transcrição Gênica
10.
J Reprod Med ; 44(8): 679-84, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10483537

RESUMO

OBJECTIVE: To assess the true incidence of vaginal vault prolapse after hysterectomy. STUDY DESIGN: The records of 2,670 patients who had undergone hysterectomy between 1983 and 1987 were reviewed. From this population, 448 patients were selected for follow-up study. The mean follow-up phase was 11 years (range, 9-13). Patients were divided into two groups according to the presence or the absence of genital prolapse at hysterectomy. Pelvic examination was performed in order to identify the presence of vault prolapse. Pelvic support was assessed using Baden and Walker's "halfway description." RESULTS: Five of the 2,670 patients who had undergone hysterectomy at our institution returned on their own initiative for surgical correction of vault prolapse. Using the modalities in the literature, the incidence of vault prolapse was 0.4%. Instead, on pelvic examination, the incidence of vault prolapse was 4.4% (20 patients in a group of 448). Fourteen of the 20 with vault prolapse had previously undergone vaginal hysterectomy for genital prolapse: six had had abdominal hysterectomy for benign disease, excluding genital prolapse. Therefore, the incidence of vaginal vault prolapse was 11.6% (14/120 patients) when hysterectomy had been performed for genital prolapse and 1.8% (6/328) when hysterectomy had been performed for other benign diseases. In the latter group (328 patients), all the cases of vault prolapse developed after abdominal hysterectomy: the incidence was 2% (6/308 patients); no case (0/20 patients) of vault prolapse developed after vaginal hysterectomy that had been performed on patients without genital prolapse. The primary risk factor for vaginal vault prolapse in this study, was obesity. Obese subjects were significantly more susceptible to developing the condition when compared to nonobese (P < .001). CONCLUSION: Our data show that there is a low incidence of vaginal vault prolapse when hysterectomy is performed in the absence of defects in pelvic support. A comparison of our method and those described in the literature to determine the incidence of vaginal vault prolapse showed that this event is often underevaluated if long-term follow-up after hysterectomy is not carried out.


Assuntos
Histerectomia/efeitos adversos , Prolapso Uterino/epidemiologia , Prolapso Uterino/cirurgia , Adulto , Idoso , Feminino , Humanos , Incidência , Pessoa de Meia-Idade , Diafragma da Pelve/anormalidades , Estudos Retrospectivos , Prolapso Uterino/etiologia
11.
Exp Cell Res ; 250(1): 62-74, 1999 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-10388521

RESUMO

We have previously reported the identification of two interferon (IFN)-induced cDNAs which code for two proteins, named 41 and 75, which have homology to a number of proteins involved in regulating gene expression. Here we establish that these cDNAs correspond to in vivo synthesized mRNAs. Expression of the 41 and 75 cDNAs, both in vitro and in vivo, generated proteins of 30 and 68 kDa, respectively. In a variety of mammalian cells, 41 and 75 were found to be located in the nucleus, with 41 being localized to the nucleolus, whereas 75, although it is mainly concentrated at the periphery of the nucleolus, is also found throughout the nucleoplasm. Treatment with interferon results in a translocation of 41 to the periphery of the nucleolus and it is in this region that the two proteins colocalize. 41 and 75 were found to colocalize with nucleolin but not with B23 or fibrillarin, three nucleolar proteins involved in ribosome synthesis. This colocalization was not affected by low concentrations of actinomycin D. In view of this and since 41 and 75 have homology to proteins involved in regulating gene expression, we suggest that, in association with nucleolin, they play a role in ribosome biogenesis.


Assuntos
Nucléolo Celular/química , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Proteínas Nucleares/análise , Fosfoproteínas/análise , Proteínas de Ligação a RNA/análise , Sequência de Aminoácidos , Animais , Células COS , Proteínas Cromossômicas não Histona/análise , DNA Complementar , Dactinomicina/farmacologia , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Nucleofosmina , Fosfoproteínas/genética , RNA Mensageiro , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Ribonucleoproteínas/análise , Homologia de Sequência de Aminoácidos , Células U937 , Nucleolina
12.
Int Immunol ; 11(7): 1075-83, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10383940

RESUMO

Human monocytes isolated from peripheral blood of healthy donors show a time-dependent differentiation into macrophages upon in vitro cultivation, closely mimicking their in vivo migration and maturation into extravascular tissues. The mediator(s) of this maturation process has not been yet defined. We investigated the involvement of signal transducers and activators of transcription (STAT) factors in this phenomenon and reported the specific, time-dependent, activation of STAT1 protein starting at day 0/1 of cultivation and maximally expressed at day 5. STAT1 activity was evident on the STAT binding sequences (SBE) present in the promoters of genes which are up-regulated during monocyte to macrophage maturation such as FcgammaRI and ICAM-1, and in the promoter of the transcription factor IFN regulatory factor-1. Moreover, the effect of cell adhesion to fibronectin or laminin was studied to investigate mechanisms involved in STAT1 activation. Compared with monocytes adherent on plastic surfaces, freshly isolated cells allowed to adhere either to fibronectin- or laminin-coated flasks exhibited an increased STAT1 binding activity both in control and in IFN-gamma-treated cells. The molecular events leading to enhanced STAT1 activation and cytokine responsiveness concerned both Y701 and S727 STAT1 phosphorylation. Exogenous addition of transforming growth factor-beta, which exerts an inhibitory effect on some monocytic differentiation markers, inhibited macrophage maturation, integrin expression and STAT1 binding activity. Taken together these results indicate that STAT1 plays a pivotal role in the differentiation/maturation process of monocytes as an early transcription factor initially activated by adherence and then able to modulate the expression of functional genes, such as ICAM-1 and FcgammaRI.


Assuntos
Moléculas de Adesão Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Transativadores/metabolismo , Adolescente , Adulto , Sítios de Ligação/imunologia , Adesão Celular/imunologia , Diferenciação Celular/imunologia , Citocinas/metabolismo , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/fisiologia , Fosforilação , Regiões Promotoras Genéticas/imunologia , Receptores de IgG/biossíntese , Receptores de IgG/genética , Receptores de IgG/fisiologia , Fator de Transcrição STAT1 , Transdução de Sinais/imunologia , Transativadores/fisiologia , Fator de Crescimento Transformador beta/farmacologia
13.
Oncogene ; 18(12): 2129-37, 1999 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-10321737

RESUMO

The Interferon Regulatory Factors-1 and -2 (IRF-1 and IRF-2) were originally identified as transcriptional regulators of the interferon (IFN) and IFN-stimulated genes. These factors also modulate immune response and play a role in cell growth regulation. In this study we analysed the effect of the ectopic expression of IRF-1 and IRF-2 on the regulation of two potential IRF target genes involved in cell growth regulation, 2-5A synthetase and p21 (WAF/CP1), both of which contain consensus binding sites for IRF family members within their promoters. Following ectopic expression, IRF-1 transactivated 2-5A synthetase and p21 genes, an effect that was counterbalanced by concomitant ectopic expression of IRF-2. These effects were mediated by direct binding of IRF to the gene promoters. A construct expressing an IRF-2 antisense (FRI-2) was able to revert the inhibitory effect of IRF-2 on the IRF-1 transactivation. IRF-1 also induced expression of its homologous repressor IRF-2 as indicated by EMSA analysis using an IRF-E probe from the IRF-2 promoter; and by cotransfection of IRF-1 together with an IRF-2 promoter CAT construct. Therefore, the induction of IRF-1 by IFNs or other stimuli acts as a transactivator of genes involved in cell growth regulation, as well as of its own repressor IRF-2, thus providing autoinhibitory regulation of IRF-1 activated genes.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Ciclinas/genética , Proteínas de Ligação a DNA/metabolismo , Fosfoproteínas/metabolismo , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21 , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Repressão Enzimática , Fator Regulador 1 de Interferon , Fator Regulador 2 de Interferon , Interferon gama/farmacologia , Modelos Genéticos , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/metabolismo , Ativação Transcricional
14.
J Biol Chem ; 274(10): 6698-703, 1999 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-10037767

RESUMO

IRF-1-deficient mice show a striking defect in the development of T helper 1 (Th1) cells. In the present report, we investigate the expression of IRF-1 during differentiation of human T helper cells. No significant differences of IRF-1 mRNA expression were found in established Th1 and Th2 cells; however, interleukin 12 (IL-12) induced a strong up-regulation of IRF-1 transcripts in Th1 but not in Th2 cells. We demonstrate that IL-12-induced up-regulation of IRF-1 is mediated by signal transducer and activator of transcription-4, which binds to the interferon (IFN)-gamma-activated sequence present in the promoter of the IRF-1 gene. Strong IL-12-dependent activation of a reporter gene construct containing the IRF-1 IFN-gamma-activated sequence element provides further evidence for the key role of signal transducer and activator of transcription-4 in the IL-12-induced up-regulation of IRF-1 transcripts in T cells. IRF-1 expression was strongly induced after stimulation of naive CD4(+) T cells via the T cell receptor, irrespective of the cytokines present at priming, indicating that this transcription factor does not play a major role in initiating a Th1-specific transcriptional cascade in differentiating helper T cells. However, our finding that IRF-1 is a target gene of IL-12 suggests that some of the IL-12-induced effector functions of Th1 cells may be mediated by IRF-1.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Interleucina-12/farmacologia , Fosfoproteínas/biossíntese , Transdução de Sinais , Células Th1/metabolismo , Fatores de Transcrição/metabolismo , Fator 4 Ativador da Transcrição , Animais , Linhagem Celular , Proteínas de Ligação a DNA/imunologia , Humanos , Fator Regulador 1 de Interferon , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Fosfoproteínas/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Th1/imunologia , Fatores de Transcrição/imunologia , Ativação Transcricional/imunologia
15.
Blood ; 93(2): 519-26, 1999 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9885213

RESUMO

In this study, we analyzed the regulation of NF-Y expression during human monocyte to macrophage maturation. NF-Y is a ubiquitous and evolutionarily conserved transcription factor that binds specifically to the CCAAT motif present in the 5' promoter region of a wide variety of genes. We show here that in circulating monocytes, NF-Y binding activity is not detected on the CCAAT motif present in the promoters of genes such as major histocompatibility complex (MHC) class II, gp91-phox, mig, and fibronectin, whereas during macrophage differentiation, a progressive increase in NF-Y binding activity is observed on these promoters. Analysis of NF-Y subunit expression indicates that the absence of NF-Y activity in circulating monocytes is caused by a lack of the A subunit. Furthermore, addition of the recombinant NF-YA subunit restores NF-Y binding. We show that the lack of NF-YA protein is due to posttranscriptional regulation and not to a specific proteolytic activity. In fact, NF-YA mRNA is present at the same level at all days of monocyte cultivation, whereas the protein is absent in freshly isolated monocytes but is progressively synthesized during the maturation process. We thus conclude that the NF-YA subunit plays a relevant role in activating transcription of genes highly expressed in mature monocytes. In line with this conclusion, we show that the cut/CDP protein, a transcriptional repressor that inhibits gpc91-phox gene expression by preventing NF-Y binding to the CAAT box, is absent in monocytes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Macrófagos/citologia , Monócitos/citologia , NADPH Oxidases , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT , Diferenciação Celular , Linhagem Celular , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Eletroforese , Humanos , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Monócitos/metabolismo , NADPH Oxidase 2 , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Proteínas Recombinantes
16.
Eur J Neurosci ; 10(9): 2975-83, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9758167

RESUMO

In order to understand the molecular basis of the synergistic action of interferon gamma (IFN-gamma) and tumour necrosis factor alpha (TNF-alpha) on rat oligodendrocyte development, we studied some aspects of the signalling pathways involved in the regulation of the major histocompatibility complex (MHC) class I and the interferon regulatory factor 1 (IRF-1) gene expression. Two well-defined inducible enhancers of the MHC class I gene promoter, the MHC class I regulatory element (MHC-CRE) and the interferon consensus sequence (ICS), were analysed. Neither IFN-gamma nor TNF-alpha was capable of inducing MHC-CRE binding activity when administrated alone. Following the exposure of oligodendrocytes to IFN-gamma, TNF-R1 expression was transcriptionally induced by the binding of signal transducer and activator of transcription (STAT-1) homodimers to the IFN-gamma activated site (GAS) present in the gene promoter. The upregulation of TNF-R1 allowed TNF-alpha to induce the binding of nuclear factor-kappaB (NF-kappaB) to the MHC-CRE site. With respect to ICS element, IFN-gamma induced IRF-1 binding, that was further enhanced upon co-treatment with TNF-alpha. The existence of a synergism between IFN-gamma and TNF-alpha in stimulating IRF-1 expression at the transcriptional level was supported by IRF-1 promoter analysis: IFN-gamma directly induced the binding of STAT-1 homodimers to the GAS element, while NF-kappaB binding to the kappaB sequence was activated by TNF-alpha only after IFN-gamma treatment. This transcriptional regulation of IRF-1 gene by IFN-gamma and TNF-alpha was confirmed at the mRNA level. The synergism demonstrated in the present study highlights the importance of cytokine interactions in magnifying their biological effects during brain injury and inflammation.


Assuntos
Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes MHC Classe I/efeitos dos fármacos , Interferon gama/farmacologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Antígenos CD/biossíntese , Sequência de Bases , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Sinergismo Farmacológico , Genes MHC Classe I/genética , Fator Regulador 1 de Interferon , Dados de Sequência Molecular , Oligodendroglia/citologia , Ratos , Receptores do Fator de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Transcrição STAT1 , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Células Tumorais Cultivadas
17.
Mol Cell Biol ; 17(3): 1387-95, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9032265

RESUMO

The ferritin H-chain gene promoter regulation was analyzed in heme-treated Friend leukemia cells (FLCs) and during monocyte-to-macrophage differentiation. In the majority of cell lines studied, the regulation of ferritin expression was exerted mostly at the translational level. However, in differentiating erythroid cells, which must incorporate high levels of iron to sustain hemoglobin synthesis, and in macrophages, which are involved in iron storage, transcriptional regulation seemed to be a relevant mechanism. We show here that the minimum region of the ferritin H-gene promoter that is able to confer transcriptional regulation by heme in FLCs to a reporter gene is 77 nucleotides upstream of the TATA box. This cis element binds a protein complex referred to as HRF (heme-responsive factor), which is greatly enhanced both in heme-treated FLCs and during monocyte-to-macrophage differentiation. The CCAAT element present in reverse orientation in this promoter region of the ferritin H-chain gene is necessary for binding and for gene activity, since a single point mutation is able to abolish the binding of HRF and the transcriptional activity in transfected cells. By competition experiments and supershift assays, we identified the induced HRF as containing at least the ubiquitous transcription factor NF-Y. NF-Y is formed by three subunits, A, B, and C, all of which are necessary for DNA binding. Cotransfection with a transdominant negative mutant of the NF-YA subunit abolishes the transcriptional activation by heme, indicating that NF-Y plays an essential role in this activation. We have also observed a differential expression of the NF-YA subunit in heme-treated and control FLCs and during monocyte-to-macrophage differentiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Precursoras Eritroides/fisiologia , Ferritinas/genética , Regulação da Expressão Gênica/genética , Macrófagos/fisiologia , Fatores de Transcrição/metabolismo , Adulto , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT , Diferenciação Celular , DNA de Neoplasias/metabolismo , Feminino , Vírus da Leucemia Murina de Friend , Hemina/farmacologia , Humanos , Técnicas In Vitro , Leucemia Eritroblástica Aguda , Macrófagos/citologia , Monócitos/química , Mutação Puntual , Regiões Promotoras Genéticas/genética , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica/genética , Células Tumorais Cultivadas
18.
Eur J Biochem ; 250(3): 764-72, 1997 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9461300

RESUMO

The effect of protoporphyrin IX (hemin without iron) on the expression of transferrin receptor and ferritin was investigated in Friend leukemia cells. Cells treated with protoporphyrin IX exhibit enhanced transferrin-receptor expression and markedly reduced ferritin synthesis. Stimulation of transferrin-receptor expression is observed at both the mRNA and protein level. The effect on ferritin synthesis is mediated by translational inhibition of the mRNA, which, in contrast, is transcriptionally stimulated by protoporphyrin IX treatment. The regulation of transferrin receptor and ferritin in response to iron perturbations has been studied extensively and is mediated by the binding of iron-regulatory proteins (IRP) to the iron-responsive elements (IRE) present in the 3' and 5' untranslated regions of the transferrin-receptor and ferritin mRNA, respectively. To elucidate the molecular mechanisms underlying the effects of protoporphyrin IX on ferritin and transferrin-receptor expression, the role of the IRE sequence was investigated both in vivo by transfection experiments, with a construct containing the coding region for the chloramphenicol acetyltransferase (CAT) reporter gene under the translational control of the ferritin IRE, and in vitro by RNA band-shift assays. Whereas, examination of IRP binding to the IRE by in vitro assays suggests an apparent inactivation of IRP by protoporphyrin IX treatment, CAT assays indicate that protoporphyrin IX is able to induce in vivo a translational inhibition similar to that obtained by treatment with the iron chelator Desferal. This observation raises the possibility of different effects on the IRP activity exerted by porphyrin treatment in intact tissue-culture cells and in vitro. We conclude that translation of ferritin mRNA and degradation of transferrin-receptor mRNA are inhibited in intact tissue-culture cells by protoporphyrin IX through a mechanism similar to that exerted by iron chelation, thus involving depletion of the intracellular iron pool. These results can improve the understanding of the regulation of ferritin gene expression in some pathological conditions associated with disturbed heme synthesis.


Assuntos
Ferritinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Protoporfirinas/farmacologia , Receptores da Transferrina/metabolismo , Animais , Contagem de Células/efeitos dos fármacos , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Desferroxamina/farmacologia , Ferritinas/biossíntese , Genes Reporter/genética , Ferro/metabolismo , Proteínas Reguladoras de Ferro , Proteínas Ferro-Enxofre/metabolismo , Leucemia Experimental , Camundongos , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , RNA Mensageiro/análise , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Transfecção/genética , Células Tumorais Cultivadas
20.
J Virol ; 69(9): 5833-7, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7637029

RESUMO

Treatment of murine Friend cells with a dose of the protein kinase inhibitor staurosporine, which is able to block the response of the cells to interferons, appears to inhibit phosphorylation of Jak proteins and, interestingly, to specifically reduce tyk2 and Jak1 expression and to increase Jak2 both in the presence and in the absence of interferons. Therefore, a potential role for phosphorylation events in the regulation of expression of the Jak family members is suggested.


Assuntos
Alcaloides/farmacologia , Expressão Gênica , Biossíntese de Proteínas , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases/biossíntese , Proteínas Proto-Oncogênicas , Animais , Vírus da Leucemia Murina de Friend/efeitos dos fármacos , Vírus da Leucemia Murina de Friend/fisiologia , Expressão Gênica/efeitos dos fármacos , Interferon-alfa/farmacologia , Interferon gama/farmacologia , Janus Quinase 1 , Janus Quinase 2 , Leucemia Experimental , Camundongos , Fosforilação , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Estaurosporina , TYK2 Quinase , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...