Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytoskeleton (Hoboken) ; 78(1): 3-13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33381891

RESUMO

Myosin active site elements (i.e., switch-1) bind both ATP and a divalent metal to coordinate ATP hydrolysis. ATP hydrolysis at the active site is linked via allosteric communication to the actin polymer binding site and lever arm movement, thus coupling the free energy of ATP hydrolysis to force generation. How active site motifs are functionally linked to actin binding and the power stroke is still poorly understood. We hypothesize that destabilizing switch-1 movement at the active site will negatively affect the tight coupling of the ATPase catalytic cycle to force production. Using a metal-switch system, we tested the effect of interfering with switch-1 coordination of the divalent metal cofactor on force generation. We found that while ATPase activity increased, motility was inhibited. Our results demonstrate that a single atom change that affects the switch-1 interaction with the divalent metal directly affects actin binding and productive force generation. Even slight modification of the switch-1 divalent metal coordination can decouple ATP hydrolysis from motility. Switch-1 movement is therefore critical for both structural communication with the actin binding site, as well as coupling the energy of ATP hydrolysis to force generation.


Assuntos
Domínio Catalítico , Actinas/metabolismo , Adenosina Trifosfatases , Trifosfato de Adenosina , Hidrólise , Modelos Moleculares , Miosina Tipo II
2.
Biochemistry ; 58(18): 2326-2338, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30973712

RESUMO

Chromokinesins NOD and KID have similar DNA binding domains and functions during cell division, while their motor domain sequences show significant variations. It has been unclear whether these motors have the similar structure, chemistry, and microtubule interactions necessary to follow a similar mechanism of force generation. We used biochemical rate measurements, cosedimentation, and structural analysis to investigate the ATPase mechanisms of the NOD and KID core domains. These studies revealed that NOD and KID have different ATPase mechanisms, microtubule interactions, and catalytic domain structures. The ATPase cycles of NOD and KID have different rate-limiting steps. The ATPase rate of NOD was robustly stimulated by microtubules, and its microtubule affinity was weakened in all nucleotide-bound states. KID bound microtubules tightly in all nucleotide states and remained associated with the microtubule for more than 100 cycles of ATP hydrolysis before dissociating. The structure of KID was most like that of conventional kinesin (KIF5). Key differences in the microtubule binding region and allosteric communication pathway between KID and NOD are consistent with our biochemical data. Our results support the model in which NOD and KID utilize distinct mechanistic pathways to achieve the same function during cell division.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação/genética , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Cinesinas/química , Cinesinas/genética , Cinética , Microtúbulos/química , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos
3.
Mol Cell ; 71(5): 841-847.e5, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100265

RESUMO

Structural maintenance of chromosomes (SMC) complexes shape the genomes of virtually all organisms, but how they function remains incompletely understood. Recent studies in bacteria and eukaryotes have led to a unifying model in which these ring-shaped ATPases act along contiguous DNA segments, processively enlarging DNA loops. In support of this model, single-molecule imaging experiments indicate that Saccharomyces cerevisiae condensin complexes can extrude DNA loops in an ATP-hydrolysis-dependent manner in vitro. Here, using time-resolved high-throughput chromosome conformation capture (Hi-C), we investigate the interplay between ATPase activity of the Bacillus subtilis SMC complex and loop formation in vivo. We show that point mutants in the SMC nucleotide-binding domain that impair but do not eliminate ATPase activity not only exhibit delays in de novo loop formation but also have reduced rates of processive loop enlargement. These data provide in vivo evidence that SMC complexes function as loop extruders.


Assuntos
Adenosina Trifosfatases/genética , Bacillus subtilis/genética , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Complexos Multiproteicos/genética , Translocação Genética/genética , Trifosfato de Adenosina/genética , Proteínas de Bactérias/metabolismo , Hidrólise , Mutação Puntual/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Imagem Individual de Molécula/métodos
4.
J Cell Biol ; 217(4): 1319-1334, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29351996

RESUMO

Kinesin-4 motors play important roles in cell division, microtubule organization, and signaling. Understanding how motors perform their functions requires an understanding of their mechanochemical and motility properties. We demonstrate that KIF27 can influence microtubule dynamics, suggesting a conserved function in microtubule organization across the kinesin-4 family. However, kinesin-4 motors display dramatically different motility characteristics: KIF4 and KIF21 motors are fast and processive, KIF7 and its Drosophila melanogaster homologue Costal2 (Cos2) are immotile, and KIF27 is slow and processive. Neither KIF7 nor KIF27 can cooperate for fast processive transport when working in teams. The mechanistic basis of immotile KIF7 behavior arises from an inability to release adenosine diphosphate in response to microtubule binding, whereas slow processive KIF27 behavior arises from a slow adenosine triphosphatase rate and a high affinity for both adenosine triphosphate and microtubules. We suggest that evolutionarily selected sequence differences enable immotile KIF7 and Cos2 motors to function not as transporters but as microtubule-based tethers of signaling complexes.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Cinesinas/metabolismo , Microtúbulos/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Catálise , Chlorocebus aethiops , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Hidrólise , Cinesinas/genética , Cinética , Microscopia de Fluorescência , Microtúbulos/genética , Filogenia , Transporte Proteico , Transdução de Sinais , Imagem Individual de Molécula/métodos
5.
J Biol Chem ; 292(35): 14680-14694, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701465

RESUMO

Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in Saccharomyces cerevisiae, can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αß-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single "canonical" site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate ("noncanonical") sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αß-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.


Assuntos
Cinesinas/metabolismo , Microtúbulos/enzimologia , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Tubulina (Proteína)/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Biocatálise , Microscopia Crioeletrônica , Cristalografia por Raios X , Deleção de Genes , Humanos , Cinesinas/química , Cinesinas/genética , Microtúbulos/química , Microtúbulos/metabolismo , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Tubulina (Proteína)/química
6.
Elife ; 3: e04686, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25415053

RESUMO

Microtubule-based transport by the kinesin motors, powered by ATP hydrolysis, is essential for a wide range of vital processes in eukaryotes. We obtained insight into this process by developing atomic models for no-nucleotide and ATP states of the monomeric kinesin motor domain on microtubules from cryo-EM reconstructions at 5-6 Å resolution. By comparing these models with existing X-ray structures of ADP-bound kinesin, we infer a mechanistic scheme in which microtubule attachment, mediated by a universally conserved 'linchpin' residue in kinesin (N255), triggers a clamshell opening of the nucleotide cleft and accompanying release of ADP. Binding of ATP re-closes the cleft in a manner that tightly couples to translocation of cargo, via kinesin's 'neck linker' element. These structural transitions are reminiscent of the analogous nucleotide-exchange steps in the myosin and F1-ATPase motors and inform how the two heads of a kinesin dimer 'gate' each other to promote coordinated stepping along microtubules.


Assuntos
Cinesinas/química , Microtúbulos/metabolismo , Nucleotídeos/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Fenômenos Biomecânicos , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação Puntual , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
Biochemistry ; 53(43): 6776-85, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25286246

RESUMO

NEMO is a scaffolding protein that, together with the catalytic subunits IKKα and IKKß, plays an essential role in the formation of the IKK complex and in the activation of the canonical NF-κB pathway. Rational drug design targeting the IKK-binding site on NEMO would benefit from structural insight, but to date, the determination of the structure of unliganded NEMO has been hindered by protein size and conformational heterogeneity. Here we show how the utilization of a homodimeric coiled-coil adaptor sequence stabilizes the minimal IKK-binding domain NEMO(44-111) and furthers our understanding of the structural requirements for IKK binding. The engineered constructs incorporating the coiled coil at the N-terminus, C-terminus, or both ends of NEMO(44-111) present high thermal stability and cooperative melting and, most importantly, restore IKKß binding affinity. We examined the consequences of structural content and stability by circular dichoism and nuclear magnetic resonance (NMR) and measured the binding affinity of each construct for IKKß(701-745) in a fluorescence anisotropy binding assay, allowing us to correlate structural characteristics and stability to binding affinity. Our results provide a method for engineering short stable NEMO constructs to be suitable for structural characterization by NMR or X-ray crystallography. Meanwhile, the rescuing of the binding affinity implies that a preordered IKK-binding region of NEMO is compatible with IKK binding, and the conformational heterogeneity observed in NEMO(44-111) may be an artifact of the truncation.


Assuntos
Quinase I-kappa B/química , Engenharia de Proteínas , Sítios de Ligação , Cristalografia por Raios X , Humanos , Quinase I-kappa B/genética , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína
9.
J Biol Chem ; 288(39): 28312-23, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23960071

RESUMO

G-proteins, kinesins, and myosins are hydrolases that utilize a common protein fold and divalent metal cofactor (typically Mg(2+)) to coordinate purine nucleotide hydrolysis. The nucleoside triphosphorylase activities of these enzymes are activated through allosteric communication between the nucleotide-binding site and the activator/effector/polymer interface to convert the free energy of nucleotide hydrolysis into molecular switching (G-proteins) or force generation (kinesins and myosin). We have investigated the ATPase mechanisms of wild-type and the S237C mutant of non-muscle myosin II motor from Dictyostelium discoideum. The S237C substitution occurs in the conserved metal-interacting switch-1, and we show that this substitution modulates the actomyosin interaction based on the divalent metal present in solution. Surprisingly, S237C shows rapid basal steady-state Mg(2+)- or Mn(2+)-ATPase kinetics, but upon binding actin, its MgATPase is inhibited. This actin inhibition is relieved by Mn(2+), providing a direct and experimentally reversible linkage of switch-1 and the actin-binding cleft through the swapping of divalent metals in the reaction. Using pyrenyl-labeled F-actin, we demonstrate that acto·S237C undergoes slow and weak MgATP binding, which limits the rate of steady-state catalysis. Mn(2+) rescues this effect to near wild-type activity. 2'(3')-O-(N-Methylanthraniloyl)-ADP release experiments show the need for switch-1 interaction with the metal cofactor for tight ADP binding. Our results are consistent with strong reciprocal coupling of nucleoside triphosphate and F-actin binding and provide additional evidence for the allosteric communication pathway between the nucleotide-binding site and the filament-binding region.


Assuntos
Trifosfato de Adenosina/química , Dictyostelium/enzimologia , Regulação da Expressão Gênica , Metais/química , Miosina Tipo II/metabolismo , Nucleotídeos/química , Citoesqueleto de Actina , Actinas/química , Adenosina Trifosfatases/química , Sítio Alostérico , Cisteína/química , Dictyostelium/genética , Hidrólise , Magnésio/química , Manganês/química , Miosina Tipo II/genética , Ligação Proteica , Estrutura Terciária de Proteína , Serina/química
10.
J Pept Sci ; 19(8): 504-10, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794508

RESUMO

The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1-34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of (15) N-enriched human parathyroid hormone, (15) N PTH(1-34), generated via a plasmid vector that gives reasonable yield, low-cost protease cleavage (leaving the native N-terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS.


Assuntos
Endopeptidases/química , Hormônio Paratireóideo/biossíntese , Sequência de Aminoácidos , Sequência de Bases , Cromatografia de Afinidade , Escherichia coli , Humanos , Dados de Sequência Molecular , Hormônio Paratireóideo/química , Hormônio Paratireóideo/isolamento & purificação , Estrutura Secundária de Proteína , Proteólise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
11.
Nat Struct Mol Biol ; 19(1): 122-7, 2011 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-22198464

RESUMO

Kinesins are molecular motors that require a divalent metal ion (for example, Mg(2+)) to convert the energy of ATP hydrolysis into directed force production along microtubules. Here we present the crystal structure of a recombinant kinesin motor domain bound to Mn(2+) and ADP and report on a serine-to-cysteine substitution in the switch 1 motif of kinesin that allows its ATP hydrolysis activity to be controlled by adjusting the ratio of Mn(2+) to Mg(2+). This mutant kinesin binds ATP similarly in the presence of either metal ion, but its ATP hydrolysis activity is greatly diminished in the presence of Mg(2+). In human kinesin-1 and kinesin-5 as well as Drosophila melanogaster kinesin-10 and kinesin-14, this defect is rescued by Mn(2+), providing a way to control both the enzymatic activity and force-generating ability of these nanomachines.


Assuntos
Cinesinas/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Proteínas Motores Moleculares/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Hidrólise , Cinesinas/química , Cinesinas/genética , Cinética , Magnésio/química , Manganês/química , Microtúbulos/metabolismo , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
12.
Biophys J ; 101(11): 2760-9, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261065

RESUMO

Eg5 is a homotetrameric kinesin-5 motor protein that generates outward force on the overlapping, antiparallel microtubules (MTs) of the mitotic spindle. Upon binding an MT, an Eg5 dimer releases one ADP molecule, undergoes a slow (∼0.5 s(-1)) isomerization, and finally releases a second ADP, adopting a tightly MT-bound, nucleotide-free (APO) conformation. This conformation precedes ATP binding and stepping. Here, we use mutagenesis, steady-state and pre-steady-state kinetics, motility assays, and electron paramagnetic resonance spectroscopy to examine Eg5 monomers and dimers as they bind MTs and initiate stepping. We demonstrate that a critical element of Eg5, loop 5 (L5), accelerates ADP release during the initial MT-binding event. Furthermore, our electron paramagnetic resonance data show that L5 mediates the slow isomerization by preventing Eg5 dimer heads from binding the MT until they release ADP. Finally, we find that Eg5 having a seven-residue deletion within L5 can still hydrolyze ATP and move along MTs, suggesting that L5 is not required to accelerate subsequent steps of the motor along the MT. Taken together, these properties of L5 explain the kinetic effects of L5-directed inhibition on Eg5 activity and may direct further interventions targeting Eg5 activity.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Multimerização Proteica , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Cinética , Microtúbulos/metabolismo , Modelos Moleculares , Sondas Moleculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Nucleotídeos/metabolismo , Estrutura Secundária de Proteína , Transporte Proteico , Soluções , Relação Estrutura-Atividade , ortoaminobenzoatos/metabolismo
13.
J Biol Chem ; 285(33): 25213-20, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20558732

RESUMO

Kinesin motor proteins use an ATP hydrolysis cycle to perform various functions in eukaryotic cells. Many questions remain about how the kinesin mechanochemical ATPase cycle is fine-tuned for specific work outputs. In this study, we use isothermal titration calorimetry and stopped-flow fluorometry to determine and analyze the thermodynamics of the human kinesin-5 (Eg5/KSP) ATPase cycle. In the absence of microtubules, the binding interactions of kinesin-5 with both ADP product and ATP substrate involve significant enthalpic gains coupled to smaller entropic penalties. However, when the wild-type enzyme is titrated with a non-hydrolyzable ATP analog or the enzyme is mutated such that it is able to bind but not hydrolyze ATP, substrate binding is 10-fold weaker than ADP binding because of a greater entropic penalty due to the structural rearrangements of switch 1, switch 2, and loop L5 on ATP binding. We propose that these rearrangements are reversed upon ATP hydrolysis and phosphate release. In addition, experiments on a truncated kinesin-5 construct reveal that upon nucleotide binding, both the N-terminal cover strand and the neck linker interact to modulate kinesin-5 nucleotide affinity. Moreover, interactions with microtubules significantly weaken the affinity of kinesin-5 for ADP without altering the affinity of the enzyme for ATP in the absence of ATP hydrolysis. Together, these results define the energy landscape of a kinesin ATPase cycle in the absence and presence of microtubules and shed light on the role of molecular motor mechanochemistry in cellular microtubule dynamics.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Difosfato de Adenosina/metabolismo , Calorimetria , Citometria de Fluxo , Humanos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Termodinâmica
14.
Cell ; 136(1): 110-22, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19135893

RESUMO

Segregation of nonexchange chromosomes during Drosophila melanogaster meiosis requires the proper function of NOD, a nonmotile kinesin-10. We have determined the X-ray crystal structure of the NOD catalytic domain in the ADP- and AMPPNP-bound states. These structures reveal an alternate conformation of the microtubule binding region as well as a nucleotide-sensitive relay of hydrogen bonds at the active site. Additionally, a cryo-electron microscopy reconstruction of the nucleotide-free microtubule-NOD complex shows an atypical binding orientation. Thermodynamic studies show that NOD binds tightly to microtubules in the nucleotide-free state, yet other nucleotide states, including AMPPNP, are weakened. Our pre-steady-state kinetic analysis demonstrates that NOD interaction with microtubules occurs slowly with weak activation of ADP product release. Upon rapid substrate binding, NOD detaches from the microtubule prior to the rate-limiting step of ATP hydrolysis, which is also atypical for a kinesin. We propose a model for NOD's microtubule plus-end tracking that drives chromosome movement.


Assuntos
Cromossomos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Nucleotídeos de Adenina/química , Adenosina Trifosfatases/metabolismo , Animais , Drosophila melanogaster/metabolismo , Cinesinas , Meiose , Microtúbulos/química
15.
Cell ; 134(6): 918-9, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18805085

RESUMO

The processive movement of the dimeric motor protein kinesin 1 along microtubules requires communication between the two motor domains. Yildiz et al. (2008) now show that tension between the motor domains not only is necessary for normal processivity but also may be sufficient for motor motility under some conditions.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Animais , Microtúbulos/metabolismo , Movimento , Estrutura Terciária de Proteína
16.
Biochemistry ; 45(40): 12334-44, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17014086

RESUMO

Kinesin-5 family members including human Eg5/KSP contribute to the plus-end-directed force necessary for the assembly and maintenance of the bipolar mitotic spindle. We have used monomeric Eg5-367 in the nucleotide-free state to evaluate the role of microtubules at each step in the ATPase cycle. The pre-steady-state kinetic results show that the microtubule-Eg5 complex binds MgATP tightly, followed by rapid ATP hydrolysis with a subsequent slow step that limits steady-state turnover. We show that microtubules accelerate the kinetics of each step in the ATPase pathway, suggesting that microtubules amplify the nucleotide-dependent structural transitions required for force generation. The experimentally determined rate constants for phosphate product release and Eg5 detachment from the microtubule were similar, suggesting that these two steps are coupled with one occurring at the slow rate after ATP hydrolysis followed by the second step occurring more rapidly. The rate of this slow step correlates well with the steady-state k(cat), indicative that it is the rate-limiting step of the mechanism.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/metabolismo , Apoenzimas/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Microtúbulos/metabolismo
17.
Biochemistry ; 44(50): 16633-48, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16342954

RESUMO

The ATPase mechanism of kinesin superfamily members in the absence of microtubules remains largely uncharacterized. We have adopted a strategy to purify monomeric human Eg5 (HsKSP/Kinesin-5) in the nucleotide-free state (apoEg5) in order to perform a detailed transient state kinetic analysis. We have used steady-state and presteady-state kinetics to define the minimal ATPase mechanism for apoEg5 in the absence and presence of the Eg5-specific inhibitor, monastrol. ATP and ADP binding both occur via a two-step process with the isomerization of the collision complex limiting each forward reaction. ATP hydrolysis and phosphate product release are rapid steps in the mechanism, and the observed rate of these steps is limited by the relatively slow isomerization of the Eg5-ATP collision complex. A conformational change coupled to ADP release is the rate-limiting step in the pathway. We propose that the microtubule amplifies and accelerates the structural transitions needed to form the ATP hydrolysis competent state and for rapid ADP release, thus stimulating ATP turnover and increasing enzymatic efficiency. Monastrol appears to bind weakly to the Eg5-ATP collision complex, but after tight ATP binding, the affinity for monastrol increases, thus inhibiting the conformational change required for ADP product release. Taken together, we hypothesize that loop L5 of Eg5 undergoes an "open" to "closed" structural transition that correlates with the rearrangements of the switch-1 and switch-2 regions at the active site during the ATPase cycle.


Assuntos
Adenosina Trifosfatases/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Pirimidinas/farmacologia , Tionas/farmacologia , Acrilamida/química , Regulação Alostérica , Ativação Enzimática , Hidrólise , Cinesinas/isolamento & purificação , Cinética , Conformação Proteica , Espectrometria de Fluorescência
18.
J Biol Chem ; 280(13): 12658-67, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15665380

RESUMO

Monastrol is a small, cell-permeable molecule that arrests cells in mitosis by specifically inhibiting Eg5, a member of the Kinesin-5 family. We have used steady-state and presteady-state kinetics as well as equilibrium binding approaches to define the mechanistic basis of S-monastrol inhibition of monomeric human Eg5/KSP. In the absence of microtubules (Mts), the basal ATPase activity is inhibited through slowed product release. In the presence of microtubules, the ATPase activity is also reduced with weakened binding of Eg5 to microtubules during steady-state ATP turnover. Monastrol-treated Eg5 also shows a decreased relative affinity for microtubules under equilibrium conditions. The Mt.Eg5 presteady-state kinetics of ATP binding and the subsequent ATP-dependent isomerization are unaffected during the first ATP turnover. However, monastrol appears to stabilize a conformation that allows for reversals at the ATP hydrolysis step. Monastrol promotes a dramatic decrease in the observed rate of Eg5 association with microtubules, and ADP release is slowed without trapping the Mt.Eg5.ADP intermediate. We propose that S-monastrol binding to Eg5 induces a stable conformational change in the motor domain that favors ATP re-synthesis after ATP hydrolysis. The aberrant interactions with the microtubule and the reversals at the ATP hydrolysis step alter the ability of Eg5 to generate force, thereby yielding a nonproductive Mt.Eg5 complex that cannot establish or maintain the bipolar spindle.


Assuntos
Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Pirimidinas/farmacologia , Tionas/farmacologia , Difosfato de Adenosina/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Relação Dose-Resposta a Droga , Humanos , Hidrólise , Cinética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Modelos Químicos , Nucleotídeos/química , Ligação Proteica , Conformação Proteica , Pirimidinas/química , Fuso Acromático , Tionas/química , Fatores de Tempo
19.
J Biol Chem ; 279(37): 38861-70, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15247293

RESUMO

Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steady-state parameters were: for Eg5-367: k(cat) = 5.5 s(-1), K(1/2,Mt) = 0.7 microm, and K(m,ATP) = 25 microm; and for Eg5-437: k(cat) = 2.9 s(-1), K(1/2,Mt) = 4.5 microm, and K(m,ATP) = 19 microm. 2'(3')-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 microm(-1)s(-1), followed immediately by ATP hydrolysis at 15 s(-1). ATP-dependent Mt.Eg5 dissociation was relatively slow and rate-limiting at 8 s(-1) with mantADP release at 40 s(-1). Surprisingly, Eg5-367 binds microtubules more effectively (11 microm(-1)s(-1)) than Eg5-437 (0.7 microm(-1)s(-1)), consistent with the steady-state K(1/2,Mt) and the mantADP release K(1/2,Mt). These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steady-state turnover.


Assuntos
Cinesinas/química , Mitose , Difosfato de Adenosina/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Divisão Celular , Cromatografia em Gel , Relação Dose-Resposta a Droga , Proteínas de Drosophila/metabolismo , Humanos , Hidrólise , Cinesinas/metabolismo , Cinética , Proteínas Associadas aos Microtúbulos , Microtúbulos/metabolismo , Modelos Químicos , Fosfocreatina/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae , Fatores de Tempo , Ultracentrifugação
20.
EMBO J ; 23(5): 989-99, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-14976555

RESUMO

The flexible tubulin C-terminal tails (CTTs) have recently been implicated in the walking mechanism of dynein and kinesin. To address their role in the case of conventional kinesin, we examined the structure of kinesin-microtubule (MT) complexes before and after CTT cleavage by subtilisin. Our results show that the CTTs directly modulate the motor-tubulin interface and the binding properties of motors. CTT cleavage increases motor binding stability, and kinesin appears to adopt a binding conformation close to the nucleotide-free configuration under most nucleotide conditions. Moreover, C-terminal cleavage results in trapping a transient motor-ADP-MT intermediate. Using SH3-tagged dimeric and monomeric constructs, we could also show that the position of the kinesin neck is not affected by the C-terminal segments of tubulin. Overall, our study reveals that the tubulin C-termini define the stability of the MT-kinesin complex in a nucleotide-dependent manner, and highlights the involvement of tubulin in the regulation of weak and strong kinesin binding states.


Assuntos
Cinesinas/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Adenilil Imidodifosfato/metabolismo , Adenilil Imidodifosfato/farmacologia , Animais , Bovinos , Dimerização , Cinesinas/química , Cinética , Microtúbulos/metabolismo , Modelos Moleculares , Maleabilidade , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...